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Abstract

We are developing a ZK-ZKVM platform for Ethereum [18] that will offer the following features: (1) Programmable

privacy: supporting a vast variety of privacy design options for smart contracts. dApp developers can at an application

level, develop private and public functions, and users can use these dApps to send both public and private transac-

tions according to their needs; (2) Robust architecture: through the means of viewing keys which can be shared to

third parties, we create a compliance-friendly landscape. Ola provides the possibillity for any entity to track the actual

whereabouts of private assets, avoiding the disadvantages of untraceable assets, such as Tornado Cash [42]; (3)

Flexible data sharing: indefinitely exposing your viewing key to a third party allows for continouous monitoring and

tracking of an accounts status; (4) Data ownership: empowering users by returning the control of their own asset infor-

mation and on-chain data; (5) High programmability: a customized GPL language which has more advanced features

and is more programmable than DSL [16]; (6) High performance: customized full-featured zk-friendly ZKVM, OlaVM

[28], can quickly execute transactions and generate proofs due to, amongst other, its non-deterministic computation

and succinct instruction set; (7) Better language scalability: based on the LLVM compilation framework, it is easier

to achieve compatibility with other advanced programming languages; (8) Developer-friendly language: Ola-lang [27]

is customized for smart contract development with syntax similar to Rust, making it convenient for developers quickly

adopt it; (9) Developer-friendly suite of tools: Ola-lang language plug-in is integrated into Visual Studio Code, mak-

ing it convenient for traditional developers to start building. Ola is a rapidly developing project and this is the second

whitepaper which will describe the design philosophy and specifications of our full-featured zk-friendly ZKVM, OlaVM

[28] and developer-friendly general purpose smart contract language, Ola-lang [27] in details. Implementation details

related to privacy will be released in the upcoming third whitepaper upon releasing the test net.
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1 Introduction

In the past few years, we have witnessed a rapid development of the blockchain industry, influx of capital, users, and
builders has enabled unprecedented growth and potential of the entire industry. However, blockchain is still somewhat
in its infancy, infrastructure is still maturing. One of the largest challenges is the low transactional throughput of
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public blockchain systems, especially the largest public programmable blockchain Ethereum [18], which in the best
case scenario [19], processes up to 23 transactions per second, far less than traditional centralized systems.

There are many reasons for the congestion of the Ethereum network, such as the POW [36] consensus algorithm
(The Merge upgrade [41] to POS [35] consensus now), the repeated execution of verification process of all transactions
by nodes, and the serial execution of transactions; for the above reasons, many projects are trying to scale Ethereum
through different means. Approach 1: Launching new public blockchains, independent of Ethereum, using faster
consensus algorithms or faster transaction execution to achieve higher TPS, such as BSC [11], Solana [37], Aptos [4],
etc; Approach 2: Ethereum Sidechain, using faster consensus algorithms and then regularly synchronizing to Ethereum,
such as Polygon [33], Optimism [29], Arbitrum [5], etc; Approach 3: ZK(E)VM, a Layer2 network of Ethereum, using
ZK technology to solve the problem of repeated execution of transactions, such as Polygon Hermez [34], Zksync [49]
etc.

Scaling is not the only problem that has to be solved in the long term for Ethereum and the wider blockchain
space. There are many excellent teams working rigorously on scaling solutions, the ola team believe that the next
crucial feature to be implemented is privacy. Blockchains being a public ledger, all transactions taking place on-chain,
meaning state changes containing the asset information related to an address or account is open and transparent.

Excessive information transparency leads to:
1. MEV (Maximal Extractable Value) issues. Miners can selectively package transactions based on its fee, resulting

in transactions with lower fees having a lower likelihood of being processed, if ever, forcing users to increase
their fees. More concerning:

2. Front running and censorship attacks, through the means of MEV. Block producers in programmable blockchains
can use MEV to exploit certain smart contracts deployed on the blockchain (Such as DEXes and other DeFi
products). They may also censor certain addresses. Such an attack could be that the miner or block producer
sees a buy order in the memory pool (where transactions that are not yet appended to the blockchain are stored)
and adds their own buy order on that particular DEX, thus increasing the price of the given token. The other
transaction that is added is a sell order of given token and the third order is the buy order of the third party for
the new increased price. Resulting in huge security issues and in the past year hackers have managed to steal
assets roughly amounting to 2 billion dollars.

3. User data ownership problems, both the assets information and transaction information of addresses are open to
being monitored and used, which is contrary to the vision of Web3 [43]. Therefore, when the scaling problem is
solved, privacy will become the next urgent feature to achieve. In the world of blockchain, privacy is not a new
topic, it has long been studied and supported by the Zcash team [45].

1.1 Non Programmable Privacy

In addition to Zcash, there are other public blockchains facilitating private transactions, such as Monero [25], Dash
[15], Grin [23], etc. However, these blockchains only support basic private asset transfers but lack programmability.
As a result, their ecosystem development significantly trails Ethereum, which has become the largest public blockchain
in the ecosystem due to its programmability. Nevertheless, Ethereum does not have privacy features. To address this
issue, some projects have started exploring ways to introduce privacy to Ethereum, such as the ZK-ZKRollup application
zk.money, developed by the Aztec team. Unfortunately, the zk.money product has been discontinued, primarily because
its privacy features were limited to basic single transfer scenarios. Given the current surge in decentralized finance
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(DeFi) applications, asset transfers represent just one of the simplest financial scenarios. Consequently, the user base
is limited, while maintenance costs continue to accumulate.

Therefore, some projects have begun to explore ways to introduce privacy to Ethereum, such as the ZK-ZKRollup
application zk.money [48] developed by the Aztec [6] team. However, the current zk.money product has been discontin-
ued, mainly because its privacy features only apply to simple single transfer scenarios. Given the current explosion of
DeFi applications, asset transfer is only one of the simplest financial scenarios, and therefore the user base is limited,
while the maintenance costs continue to accrue.

Figure 1: Example of Non Programmable Privacy

Figure 1 shows the simple logic of non-programmable privacy. The value change logic corresponding to the
input and output notes in Section 5.2.3 are also fixed, generally in the form of “A+B = C+D”. Manta Network [24]
is a public blockchain that supports user-defined token privacy transfers, and the privacy transaction constraint circuits
of all fungible tokens can be used to reuse the above logic.

A ZK-ZKRollup of a single-use case application, is similar to a corresponding ZKRollup of a single-use case
application. If you want to use an asset in another application, you must bridge the asset through another protocol,
which is generally a poor user experience. Therefore, just as ZKRollups need to transition to ZK(E)VMs, ZK-ZKRollup
also needs to transition to ZK-ZKVMs (Appendix 7.2 explains how to get solidity compatibility).

1.2 Programmable Privacy

ZK-ZKVM has two main features:
1. It’s a privacy-first platform, not privacy-only. Meaning that users can choose the transaction type, public or

private, depending on their need. Just as in Zcash;
2. Programmability, you can deploy any smart contract, public or private, depending on the needs of the project

side. Compared with non programmable privacy, the main difference is the logic of state transitions in a note
5.2.3, Figure 2 simply shows the difference

Current projects focusing on programmable privacy are Aleo [1] and Aztec. Aleo is a privacy-first public
blockchain, from Bitcoin [12] to Ethereum to Zcash [45] to Aleo. It brings the public blockchain into a new era,
supporting programmable privacy. It has reached the testnet stage and allow developers to deploy privacy contracts
on it; Aztec focuses on doing Layer2 programmable privacy for Ethereum, a project called Aztec3 [7], is still in
development.
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Figure 2: Difference between Non Programmable Privacy and Programmable Privacy

Before we clarify the different approaches on achieving programmability, we will clarify what Domain Specific
Language (DSL) and General Purpose Language (GPL) [16] are. DSL is defined as a computer programming language
of limited expressiveness focused on a particular domain, limited expressiveness means it just supports a bare minimum
of features needed to support its domain. You can’t build an entire software system in a DSL; rather, you use a DSL
for one particular aspect of a system. While GPL is defined as a general-purpose programming language.

So there are often two ways to achieve programmability, one is to design a DSL, such as Circom [14], Pil [31],
Noir [26], etc; the other is Smart Contract Language SCL, such as Cairo1.0 [13], Solidity [38], Ola lang [27] and so
on. As we have mentioned before, the main difference is that SCL supports more complex structures and has higher
abstraction, it’s more suitable for writing complex business logic and meanwhile, and DSL is more suitable for some
simple computational expressions. Take Pil [31] language as an example, you can directly use it to define a simple
micro-op, such as “A ∗B + C”, or “A ∗B ∗ C +D” and other simple combinations. Table 1 briefly shows some of
the differences between DSL and SCL.

Type Abstraction Process Difficulty Examples Notes

DSL low program -> arith-ops -> ops gadgets normal
circom

noir

cairo

1. semantic analysis

2. codeGen optimization

SCL

(ISA/VM)
high program -> bytecodes -> cpu circuit hard

solidity

cairo1.0

ola lang

1. need a compiler

2. re-use LLVM framework

Table 1: Difference between DSL and SCL

If you want to prove a program written by DSL is executed correctly (this is what ZKDSL means), you may need
to predefine some common operators, each of them corresponding to a circuit, called a gadget [21]. Developers can use
these operators to implement desired functions, but it’s difficult to handle the call and return logic between functions.
Meanwhile, If you want to prove a program written by SCL is executed correctly (this is what ZKVM means), you
need to design corresponding constraints for each instruction, collectively referred to as CPU circuit; therefore, Any
program will be compiled into bytecodes composed of these instructions, and then constrained by the CPU circuit.

Ola achieved a customized SCL to get programmability even though it’s harder to implement than DSL, because
we could get benefits from it as follows:

• Higher abstraction and programmable language, allowing developers to write smart contracts with arbitrary
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logic;
• A full-featured zk-friendly VM can be designed to achieve higher system performance;
• LLVM-based compiler can be more easily compatible with other advanced programming languages.

1.3 Full-featured ZK-friendly ZKVM

To achieve programmability, the optimal approach is to create a complete zk-friendly ZKVM with a customized
instruction set, smart contract language, compiler, and more. A ZKVM is a virtual machine capable of executing
any program while simultaneously generating a zero-knowledge proof of the correctness of the execution process.
Therefore, the speed of proof generation is crucial, as it directly affects the system’s performance.

The key to obtaining a full-featured zk-friendly ZKVM lies in obtaining (
1. The smallest possible execution trace
2. The most succinct state transition constraints
3. The fastest zero-knowledge proof algorithm

The smallest execution trace refers to the ability of OlaVM [28] to use the fewer instructions for the same
computational logic, achieved through non-deterministic computation support at the computational level and register-
based design at the memory access level.

The most succinct state transition constraints refer to the ability to constrain the entire execution trace of OlaVM
for the same computational logic with the fewest polynomials and the smallest order, accomplished through Algebraic
RISC architecture. The instruction sets size determines the CPU circuits complexity.

A faster zero-knowledge proof algorithm refers to the ability to complete the proof generation process in a shorter
time for the same calculation using OlaVM. This primarily depends on the Goldilocks [22] field, a finite field less than
64-bit. Compared to the SNARK system based on large bit-width elements of elliptic curves, the STARK algorithm
based on the Goldilocks [22] field is executed faster.

The subsequent chapters will elaborate on Ola’s design philosophy and specifications for obtaining a full-featured
zk-friendly ZKVM. Ola, a programmable privacy Layer2 network based on ZKVM, Ola will support the following
features and use cases:

• Projects:
– Developers can freely choose to deploy public contracts (Account-based), privacy contracts (Note-based),

and ordinary contracts (Account and Note-based).
1. For public contracts, Ola functions as a ZKVM;
2. For privacy contracts, Ola functions as a ZK-ZKVM;
3. For ordinary contracts, Ola functions as a ZK-ZKVM or ZKVM, depending on the user’s transaction

type;
– Transfer of assets between public and private accounts
– Intra-contract, no bridge contract is required, supported by default;
– Cross-contract, a bridge contract is required;

• Users:
– For ordinary contract types, users can freely choose the transaction type;
– For public/private contract types, users can only execute transactions of the corresponding type;
– Users have a view key to disclose executed private transactions;
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– Ola supports the update of the view key so that after the view key is exposed, the privacy transactions
executed by the user in the future will always be parsed;

– Ola supports asset transfers between public and private accounts.

1.4 Outline

Ola is a full stack developer framework for zero-knowledge applications, the whole framework is shown as
Figure 3:

Figure 3: Ola framework

The green borders refers to the modules we have completed implementation, and others stand for the modules we
will implement in the future. In the remaining sections of this whitepaper, we will introduce those modules as follows:

• Section 2 mainly describes the design of Ola’s virtual machine, including our zk-friendly design schemes;
• Section 3 mainly describes the design of the customized smart contract language, Ola-lang and the framework

of Ola compiler based LLVM;
• Section 4 mainly describes the design of Ola compiler;
• Section 5 mainly describes key points on achieving privacy;
• Section 6 mainly describes algorithms used in Ola, including zk and hardware acceleration algorithms;
• Section 7 mainly describes the key features we researched to be supported in the future and our frameworks

around that;
• Section 8 mainly describes some basic notations;

2 Ola-VM: A Full-featured ZK-friendly ZKVM

2.1 Design Principles

2.1.1 Design of Instruction Set

OlaVM utilizes the Reduced Instruction Set Computer (RISC) architecture, which is characterized by a smaller
instruction set compared to the Complex Instruction Set Computer (CISC) architecture. The contrast between RISC
and CISC architectures can be further explored in the RISC vs. CISC comparison.
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1. A reduced instruction set reduces the number of constraint polynomials
In ZKVM, there is a very critical constraint, the CSTC (CPU State Transition Constraint); it is mainly used to

constrain the validity of VM state changes before and after the execution of an instruction.

Figure 4: Instruction-induced cpu state transition

As shown in Figure 4, there are many registers in the VM. When the VM executes an instruction, it will cause
the state of some registers to change, in order to ensure the correctness of the VM execution, we need to constrain the
following:

• The change of register state involved in the execution of the instruction is valid;
• The status of registers not involved in the instruction execution remains unchanged.
Let’s look at a simple example to explain the constraints on register state changes:

clk pc instruction . . . reg0 reg1 reg2 . . .

. . . . . . . . . . . . . . . . . . . . . . . .

78 8 ADD reg0 reg0 reg1 . . . 1 2 0 . . .

79 9 MOV reg2 3 . . . 3 0 0 . . .

80 11 JMP 2 . . . 3 0 3 . . .

81 2 . . . ... 3 0 3 . . .

Table 2: Example of cpu state transitions

Table 2 briefly presents the changes of some registers after the VM executes three instructions; taking the PC
register as an example, the logic of the updates of the three instructions are:

• ADD: pci+1 = pci + 1

• MOV: pci+1 = pci + 2

• JMP: pci+1 = 2

When considering constraints, we cannot predict which instruction the VM will execute at any given time.
Therefore, we must design a constraint capable of handling all instructions. This constraint is known as the CPU State
Transition Constraint (CSTC). In the aforementioned simple example, the update logic of the PC can be designed as
follows:

pci+1 = sel_jmpi · imm_value + (1− sel_jmp) · (pci + 1 + op1_imm)

We express all CPU state transitions in this constrained form. The inclusion of each new instruction introduces
additional selectors, which increases the complexity of the constraints. To manage this complexity, we limit the
instruction size to 19, including built-ins.

Despite having a reduced instruction set architecture, it is still necessary to maintain Turing-completeness to
ensure that we can perform any computation with these simple instructions. Combining these instructions with the
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prophet mechanism described in Section 2.1.3, we have developed Ola-lang, a Turing-complete language that supports
loops and recursive operations.

2. Most of the operations will use a small part of the instruction set
Under the CISC architecture, a vast instruction set is defined. However, in practice, only a small subset of the

instructions is used for most computations. From a constraint standpoint, this represents a significant inefficiency.
This is because the constraint logic for all instructions must be included in the constraint system (CSTC), and in the
worst-case scenario, each instruction corresponds to a constraint factor. This complexity can lead to a large number of
polynomials and high-order constraints, making the entire constraint system challenging to scale.

Figure 5: The best way to support ZK-Unfriendly computation

In many cases, when performing certain calculations, it is preferable to use the existing instruction set instead of
introducing a new instruction. While this approach may increase the program size (in terms of opcodes), redundant
data can be added during the verification process to facilitate FFT. However, for complex computations that require a
significant number of instructions, other solutions are available. These include introducing Builtins and our Prophet
module, which will be discussed in more detail in subsequent chapters. For now, it is important to note that they can
significantly reduce the number of instructions needed to perform these complex computations, as demonstrated in
Figure 5.

2.1.2 Design of Registers

As discussed in Section 2.1.1, in ZKVM, we must not only constrain the state of the registers associated with the
instruction being updated correctly, but we must also ensure that the state of the registers not involved in the current
instruction remains unchanged. While register-based VMs offer certain advantages, having a larger number of registers
is not necessarily better from a verification standpoint. There is a trade-off that must be considered:

• How many registers will be sufficient for most of the calculations?
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• For some calculations, is the increased number of memory accesses acceptable when there are not enough
registers?

If the number of registers is small enough and memory accesses don’t need to be constrained, this would be the
ideal scenario for verification efficiency. The design of the Cairo VM exemplifies this approach, with no general-
purpose registers and all instruction operands originating from memory. To avoid consistency checks on memory,
a write-once model is employed, meaning memory can’t be rewritten at the execution level, obviating the need for
checks.

However, the write-once model’s downside is that it’s unfriendly to Dapp developers, and the memory model’s
limitations require developers to be extra mindful of memory usage. The traditional memory model is the read-write
model.

Figure 6: How to get ZK-Friendly(Smaller Trace) from register

As illustrated in Figure 6, we have opted for an optimal solution that takes into account both ZK-Friendly and
Dev-Friendly perspectives. When it comes to the number of registers, we have considered the fact that the minimum
type of computation that can be supported on OlaVM is U32 integer computation. With some boundary conditions
such as the number of loops, loop termination conditions, etc., we have determined that nine general-purpose registers
can support most of the U32 computation. Furthermore, both U64 and U256 integer computations can be implemented
through the U32 library. OlaVM utilizes two special registers (PC and PSP) as well, as explained in Section 2.2.1.

If the number of registers is insufficient, we need to use memory for caching, which necessitates memory access-
related instructions (MLOAD, MSTORE). It is important to note that in order to facilitate FFT, Provers often add
redundant data in Trace to meet the size of Trace to the power of 2. These redundant data can be replaced with valid
data, as demonstrated in Figure 7.

Figure 7: Better layout of Trace
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2.1.3 Prophet

OlaVM employs a reduced instruction set, which limits its ability to support certain complex computations. The
conventional approach to address this is to implement such computations using existing instructions. However, this
method may consume a large number of opcodes, and there is an upper limit on the size of Trace. Therefore, to
accommodate more computations in Trace, each opcode should occupy fewer trace cells. Alternatively, one can take
inspiration from the design of EVM and use a pre-compiled contract to support complex computations. In this mode,
there is no need to use EVM instructions to implement the computation; instead, one can add the corresponding
pre-compiled contract, which can be written in any high-level language such as Rust or Go. However, this approach
significantly increases the proof workload, requiring a separate trace table for the complex computation, and performing
constraint proof only on the output of this computation and its input recorded in the CPU trace.

Figure 8: How the Prophet can get ZK-Friendly

It is desirable to support complex computations using few opcodes without increasing the complexity of the proof.
To achieve this, we have devised a method called the “Prophet”, depicted in Figure 8, which follows a prophecy and
confirmation approach. This method fits well with the overall design of OlaVM.

For complex computations, the result of the complex computation is first computed locally by someone else (often
Prover himself), without any constraints. Subsequently, the VM performs a validity check on the computed result
before proceeding with the rest of the computation. This verification process is implemented using instructions and is
included in the proof process.

For example, consider the task of calculating the square root of a radicand. While implementing Newton’s method
requires more than 20 instructions, verifying if a result is indeed the square root of a radicand can be done succinctly.
ZKVM, for instance, only needs to multiply the result with itself to obtain a product and then verify if the product
is equal to the radicand. This process requires only two instructions. With the second algorithm, how to compute
the square root is not a concern for the ZK circuit and user. The computation process is wrapped up in the prophet
segment and does not need to be verified by the ZK circuit. The ZK circuit only needs to verify the succinct logic
result · result = radicand. By using OlaVM to execute both algorithms and generate ZK proof, the second
algorithm is ten times faster than the first traditional algorithm. (See Section 2.2.3 for more details.)

To ensure that OlaVM remains developer-friendly at a language level, it currently does not support developers to
write their own Prophet implementations. Instead, the Prophet library is officially maintained and updated. Additionally,
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to ensure security, memory access during Prophet execution is read-only. It’s worth noting that not all complex
calculations are suitable for this model. Calculations that are complex to implement but efficient to verify, such as
square root and cube root, are more suitable for this approach. However, there are also some calculations that are not
complex but still ZK-unfriendly, such as bitwise operations, range checks, hashing, and other calculations. These types
of calculations are not suitable for Prophet’s design. Instead, we use the pre-compiled approach to support them, which
is similar to the pre-compiled contract function in EVM. We call this approach "Builtin". In the subsequent chapters,
we will introduce the type of Builtin and the way of constraint in detail.

2.1.4 Memory

The memory design is influenced by the prophet. To ensure that the memory trace table can be written by
prophet without use instructions, the memory space need be partitioned into several segment. The prophet segment is
write-once for constraint, reference: Section 2.2.2

2.2 OlaVM

OlaVM is a zero-knowledge virtual machine (ZKVM). It executes the program compiled from the Ola-lang to
generate trace tables. The traces are used by ZK prover to construct the ZK proof. The program format provided by
Ola-lang compiler consists of two fields (bytecode and prophets):

• bytecode consists of instructions and can not be empty.
• prophets is a array contain all prophets and can be empty.
The program snippet is as below:

{
" bytecode ": "0x 6000080400000000 \n0x5\n0x 2010000001000000 \n0 xfffffffeffffffff \n0x

4000000840000000 \n0x0\n0x 0030000001000000 \n",
" prophets ": [

{
"host ": 41,
"code ": "%{\n entry () {\n cid.y = sqrt(cid.x);\n }\n %}" ,
" inputs ": [

{
"name ": "cid.x",
" stored _in ": "reg",
" anchor ": "r1",
" offset ": 0

}
],
" outputs ": [

"cid.y"
]

}
]

}

OlaVM contains the following modules:
• instructions set
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• prophet

• builtin

• memory

• trace generator

2.2.1 Instruction Set

OlaVM uses different spaces between instructions and memory addresses. It is because the OlaVM has sufficient
space for use, and using a unified space can make the column for storing constraints smaller, reducing overhead.

Register Currently, there are two main models for designing the L0 layer of the OlaVM memory hierarchy in the
industry, one is the register model and the other is the stack model. For the stack model, state updates are implemented
according to the first-in-last-out model of the stack.The constraints are relatively simple. However, the disadvantage is
that accessing the state is not user-friendly. It is not possible to use one instruction to randomly access data at a specific
address in the stack.
In contrast, the register model only requires one instruction to complete a randomly read operation, while the stack
model requires multiple pop and push operations. Alternatively, to improve efficiency, swap-like instructions are added
in the MidenVM design to optimize randomly accessed data in the stack. For the register model, any registers can be
randomly accessed. However, the disadvantage is that the constraint model requires copy constraints for the upper and
lower instructions and more columns for register selectors. The columns in the trace table are larger than the stack
model.
As designed in the previous version of the whitepaper,OlaVM selects the register model.OlaVM includes 9 general-
purpose registers. The symbol denotes as: r0 − r8. The r8 is used as fp (frame pointer). fp is the alias of
r8.

The PC (program counter) pointer of a loaded program initially points to the instruction at address 0. As
instructions are executed, the value of the address pointed to by the PC changes. If a jump or call instruction is not
executed, the address stored in the PC register is incremented by 1 for each instruction executed, unless the instruction
uses an immediate value, in which case the PC is incremented by 2.

The PSP (prophet stack pointer) register is used to alloc the prophet memory segment when OlaVM execute
prophet code.In the initial state, set the prophet memory segment start address (264 − 2 · 232) to this register.

OlaVM instructions To minimize the degree of constraints, OlaVM use reduced instruction set.
OlaVM use Words (64bits) to encode instructions. An instruction is encoded with an opcode and up to three

operands, which can be either a register or an immediate value. An instruction encoding consists of the following 8
fields:

• Field1: Field name: NULL.1 bit width,not used.
• Field2: Field name: OP1 immediate flag (OP1_IMM, imm). 1-bit width. Set to 0, indicates that A is a register;

set to 1, indicates that A is an immediate value.
• Field3: Field name: operation0 register (OP0_REG, reg_src1). 9-bit width. Indicates source op0 register index,

index range from 0 to 8. Set to 1 determine operating the register corresponding to the index, otherwise set to 0.
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• Field4: Field name: operation1 register (OP1_REG, reg_src2). 9-bit width. Indicates source op1 register index,
index range from 0 to 8. Set to 1 determine operating the register corresponding to the index, otherwise set to
0.If all 9 bits set to 0, indicates use PSP (prophet stack pointer) register.

• Field5: Field name: destination register (DST_REG, reg_dst). 9-bit width. Indicates destination register index,
index range from 0 to 8. Set to 1 determine operating the register corresponding to the index, otherwise set to 0.

• Field6: Field name: opcode selector (opcode_sel). 21-bit width. Indicates the opcode type, set to 1 determine
executing the opcode, otherwise set to 0.

• Field7: Field name: padding bits (paddings). 14-bit width. All bits padding by 0, will be used in the future.
• Field8: Field name: immediate data (immediate). This field is an option, determined by field2 if field2 is set to

1. This field indicates an immediate value, This field is 2 Word wide.
The instruction set of OlaVM is as below, A denoted intermediate or register:

Type Instruction Operands Description flag

Field Operation
ADD ri rj A Compute rj + A and store the result in ri

MUL ri rj A Compute rj * A and store the the result in ri

NOT ri A Compute not A and store the the result in ri

Cmp
EQ ri rj A Equality comparison and store the the result in ri rj = A

NEQ ri rj A check whether rj is not equal A and store the the result in ri rj != A

ASSERT ri A Assert ri == A and vm will hang up if assertion fail

Move MOV ri A Copy the data of A to ri

Flow

JMP A Set PC equal A

END only appears at the end of the program

CJMP rj A If rj = 1, set PC equal A, else increment PC as usual

CALL A
The Call instruction consists of the following steps

1. store return PC to the frame address [fp-1].

2. jump to the address A

RET

The Ret instruction consists of the following two steps

1. use the memory address stored in the fp register

to find the returned PC and jump to the location of the returned PC .

2. update the fp register to the fp before the call

RAM
MLOAD ri [A, imm]

Read the value from memory [A+imm] and store it into ri.

imm is optional, can not represent.

A can be a intermediate data or register value.

if A is a register, can follow a immediate data.

MSTORE [A, imm] rj

Read the value from register rj and store it into memory [A+imm].

imm is optional, can not represent.

A can be a intermediate data or register value.

if A is a register, can follow a immediate data.

BUILTIN

RANGE CHECK rj range check the value in rj

AND ri rj A Compute rj and A and store the the result in ri

OR ri rj A Compute rj or A and store the the result in ri

XOR ri rj A Compute rj xor A and store the the result in ri

GTE ri rj A check whether rj is great than or equal to A and store the the result in ri rj >= A

Table 3: Instruction set

17



As per the above definition: instruction encoding uses 2W width when there is no immediate value, and 4W width
when there is an immediate value. The alloc principle of operand: when register state changes, the register is set as
DST_REG operand. when the register state does not change, the register is set as OP0_REG operand and OP1_REG
operand. If only use one register state not changes, use OP1_REG operand. The instruction encodes format as the
table below:

NULL OP1_IMM OP0_R8 OP0_R7 OP0_R6 OP0_R5 OP0_R4 OP0_R3 OP0_R2 OP0_R1 OP0_R0 OP1_R8 OP1_R7 OP1_R6 OP1_R5 OP1_R4

OP1_R3 OP1_R2 OP1_R1 OP1_R0 DST_R8 DST_R7 DST_R6 DST_R5 DST_R4 DST_R3 DST_R2 DST_R1 DST_R0 ADD MUL EQ

ASSERT MOV JMP CJMP CALL RET MLOAD MSTORE END RANGE_CHECK AND OR XOR NOT NEQ GTE

padding

immediate data 48-63 bits

immediate data 32-47 bits

immediate data 16-31 bits

immediate data 0-15 bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table 4: OlaVM instruction encode format

The pseudocode for the state transition of executing instructions is as follows:
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new_op :
opcode = opcode_list [ instuction [pc ]. opcode_sel ]
imm = instuction [pc ]. imm
ri = reg_dst
rj = reg_src1

if imm == 1:
next = pc + 2
A = immediate

else
next = pc + 1
A = reg_src2

endif

switch opcode :
ADD:

ri = rj + A
break

MUL:
ri = rj * A
break

EQ:
if rj == A:

ri = 1
else

ri = 0
break

MOV:
ri = A
break

JMP:
pc = A
goto new_op

CJMP:
if rj == 1:

pc = A
goto new_op

CALL:
[fp -1] = next
pc = A
goto new_op

RET:
fp = [fp -2]
pc = [fp -1]
goto new_op

MLOAD :
ri = [A]
break

MSTORE :
[A] = ri
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break
ASSERT :

if ri != A:
panic (" ASSERT failed ")

RANGE_CHECK :
insert ri value to rangetable trace table
break

AND:
ri = rj & A
break

OR:
ri = rj | A
break

XOR:
ri = rj xor A
break

NOT:
ri = not
break

NEQ:
ri = rj != A
break

GTE:
ri = rj >= A
break

pc = next
goto new_op

procedure call standard Stack space to function. When executing a ret instruction, the fp decrease and reclaim
stack space allocated to the function. After executing a call instruction, fp points to the callee function stack. The
return PC address stored in:[fp-1], the caller fp address stored in [fp-2], the first three input parameters stored in
r1 − r3. From the fourth parameter, the parameters are stored in descending order: [fp-3], [fp-4] · · · . The local
variables are stored in the stack from [fp] in ascending order. The return value stored in r0.

For example: function foo(a: felt, b: felt, c: felt, d: felt, e: felt), input parameters:
a=0x1, b=0x2, c=0x3, d=0x4, e=0x5.

func foo(a: felt , b: felt , c: felt , d: felt , e: felt)
let sum = 0;
sum = a+b;
sum = sum * c;
sum = sum + d + e
return sum;

The fp, PC and memory state transition when function call is executed is as Figure 9 (yellow represent memory
address, red represent instruction address, blue represent registers):
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Figure 9: OlaVM function call model

2.2.2 Memory

The memory structure of OlaVM consists of two types (Read-Write and Write-Once) and mapping to disjoint
regions of the memory space.

Memory Seg Type Range

random access memory read-write [0, 264 − 3 · 232 − 1]

ecdsa write-once [264 − 3 · 232, 264 − 2 · 232 − 1]

poseidon write-once [264 − 2 · 232, 264 − 232 − 1]

prophet write-once [264 − 232, 264 − 1]

Table 5: Memory segment range

OlaVM uses the B-Tree algorithm to manage the memory address and support random access memory.The B-Tree
algorithm sorts the memory by address and CPU clock when inserting data into the memory by address.

1. When random access memory, the time complexity of search is O(logN).
2. When generate memory trace table by address and clock in ascending order,the memory can direct visit, not

need sort again.
The memory structure illustration is as Figure 10:

2.2.3 Prophet Interpreter

The prophet interpreter runs the prophet code in the field prophets of program. Prophet interpreter does not
change the state of PC and r0 − r8. It runs the prophet code and stores the state of context id in the prophet segment
of memory and updates the PSP to free prophet memory in ascending order. The prophet code snippet is as below,
the entry procedure is the beginning when the prophet interpreter runs, and the variable with the prefix of cid is the
context id:

%{
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Figure 10: OlaVM memory structure

function mod(felt x, felt y) -> felt {
return x % y;

}

entry () {
cid.r = mod(cid.x, cid.y);

}
%}

The prophet interpreter illustration is as below. The pink blocks are the logic related to the prophet interpreter. The
blue blocks are the logic related to OlaVM executor. The green blocks are the beginning and end. Prophet interpreter
is embedded to OlaVM executor as a module. Olavm execute the program the process is shown as Figure 11:

2.2.4 builtin

OlaVM implements builtin to support range check, hash, etc. Builtin code need to be encoded in the instruction
set, the definition in builtin rows of Table 3.

• Range Check
Range check builtin is used to check u32 type data.OlaVM put check data into range check trace table when
execting the range check builtin. The trace table reference: Table 12.

• Bitwise
Bitwise builtin is used to implement the and, or, xor three bitwise operations of u32 type data.OlaVM runs the
builtin logic and put operation result into bitwise trace table.the trace table reference: Table 14. Meanwhile, put
two source operands into range check trace table.

• Comparison
Comparison builtin is used to implement gte (great or equal) comparison.OlaVM runs the builtin logic and
operation result into a comparison trace table. The trace table reference: Table 13. Meanwhile, put two source
operands into range check trace table.
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Figure 11: OlaVM prophet interpreter flow
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2.3 Trace Tables

In general, the constraints of each table in OlaVM and the constraints between different tables are shown in the
figure 12

Figure 12: OlaVM STARK tables

2.3.1 Cpu Table

Context related columns:

clk pc reg0 reg1 reg2 reg3 reg4 reg5 reg6 reg7 reg8 (fp)

Table 6: Cpu table columns, context related

• clk: Cpu clock, 1 increment per line.
• pc: Program counter, indicates the line number of the currently executed instruction in the program.
• reg0 ~reg8: Register values. Reg8 may work as general register as well as frame pointer.
Instruction related columns:

instruction op1_imm opcode immediate_value

Table 7: Cpu table columns, instruction related

• instruction: The currently executing instruction.
• op1_imm: Indicates if op1 is a immediate value.
• opcode: The currently executing instruction opcode.
• immediate_value: If current instruction contains immediate value, this should be it.
Columns for register selector:

• op0: Value of operand 0, should be a copy of a register.
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op0 op1 dst aux0 aux1 sel_op0_r0 · · · sel_op0_r8 · · · sel_op1_r8 sel_dst_r0 · · · sel_dst_r8

Table 8: Cpu table columns for register selector

• op1: Value of operand 1, could be a copy of a register or equal to the immediate value.
• dst: Value of result, should be a copy of a register.
• aux0: Auxillary column, some instruction may use this column.
• aux1: Auxillary column, some instruction may use this column.
• sel_op0_ri: The i-th register used for op0.
• sel_op1_ri: The i-th register used for op1.
• sel_dst_ri: The i-th register used for result.
Columns for opcode selector:

sel_add sel_mul sel_eq sel_assert sel_mov sel_jmp sel_cjmp sel_call sel_ret sel_mload sel_mstore

Table 9: Cpu table columns for opcode selector

• sel_add: Selector for opcode add.
• sel_mul: Selector for opcode mul.
• sel_eq: Selector for opcode eq.
• sel_assert: Selector for opcode assert.
• sel_mov: Selector for opcode mov.
• sel_jmp: Selector for opcode jmp.
• sel_cjmp: Selector for opcode cjmp.
• sel_call: Selector for opcode call.
• sel_ret: Selector for opcode ret.
• sel_mload: Selector for opcode mload.
• sel_mstore: Selector for opcode mstore.
Columns for builtin selector:

sel_range_check sel_and sel_or sel_xor sel_not sel_neq sel_gte sel_poseidon sel_ecdsa

Table 10: Cpu table columns for builtin selector

• sel_range_check: Selector for range_check.
• sel_and: Selector for bitwise and.
• sel_or: Selector for bitwise or.
• sel_xor: Selector for bitwise xor.
• sel_not: Selector for bitwise not.
• sel_neq: Selector for comparison neq.
• sel_gte: Selector for comparison gte.
• sel_poseidon: Selector for poseidon hash function.
• sel_ecdsa: Selector for ecdsa.
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2.3.2 Memory Table

is_rw addr clk opcode is_write value diff_addr
diff_

addr_inv
diff_clk

diff_add

r_cond

filter_looked

_for_main

rv_addr

_unchanged

region

_prophet

region

_poseidon

region

_ecdsa
rc_value

filter_

looking_rc

1 100 5 mstore 1 55 0 0 0 0 1 0 0 0 0 0 1

1 100 12 mload 0 55 0 0 7 0 1 1 0 0 0 7 1

1 100 17 mstore 1 300 0 0 5 0 1 1 0 0 0 5 1

1 100 26 mload 0 300 0 0 9 0 1 1 0 0 0 9 1

1 124 36 mstore 1 20000 24 (1/24) 0 0 1 0 0 0 0 24 1

1 124 37 call 0 20000 0 0 1 0 1 1 0 0 0 1 1

1 124 50 ret 0 20000 0 0 13 0 1 1 0 0 0 13 1

1 125 37 call 1 30000 1 1 0 0 1 0 0 0 0 1 1

1 125 50 ret 0 30000 0 0 13 0 1 1 0 0 0 13 1

1 150 20 mstore 1 78 25 (1/25) 0 0 1 0 0 0 0 25 1

1 150 23 mload 0 78 0 0 3 0 1 1 0 0 0 3 1

1 200 8 mstore 1 99 50 (1/50) 0 0 1 0 0 0 0 50 1

1 200 15 mload 0 99 0 0 7 0 1 1 0 0 0 7 1

0 p”’ 0 0 1 in p”’-200 0 0 p”-addr 0 0 0 0 1 p”-addr 1

0 p”’+1 0 0 1 in 1 0 0 p”-addr 0 0 0 0 1 p”-addr 1

0 p”’+2 0 0 1 out 1 0 0 p”-addr 0 0 0 0 1 p”-addr 1

0 p”’+2 44 mload 0 out 0 0 0 p”-addr 1 0 0 0 1 p”-addr 1

0 p”’+3 0 0 1 out 1 0 0 p”-addr 0 0 0 0 1 p”-addr 1

0 p”’+3 45 mload 0 out 0 0 0 p”-addr 1 0 0 0 1 p”-addr 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 p” 0 0 1 in . . . 0 0 p’-addr 0 0 0 1 0 p’-addr 1

0 p”+1 0 0 1 in 1 0 0 p’-addr 0 0 0 1 0 p’-addr 1

0 p”+2 0 0 1 out 1 0 0 p’-addr 0 0 0 1 0 p’-addr 1

0 p”+2 55 mload 0 out 0 0 0 p’-addr 1 0 0 1 0 p’-addr 1

0 p”+3 0 0 1 out 1 0 0 p’-addr 0 0 0 1 0 p’-addr 1

0 p”+3 56 mload 0 out 0 0 0 p’-addr 1 0 0 1 0 p’-addr 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 p’ 0 0 1 123 . . . 0 0 p-addr 0 0 1 0 0 p-addr 1

0 p’ 7 mload 0 123 0 0 0 p-addr 1 0 1 0 0 p-addr 1

0 p’ 9 mload 0 123 0 0 0 p-addr 1 0 1 0 0 p-addr 1

0 p’+1 0 0 1 456 1 0 0 p-addr 0 0 1 0 0 p-addr 1

0 p’+1 27 mload 0 456 0 0 0 p-addr 1 0 1 0 0 p-addr 1

Table 11: Memory Trace Table

• is_rw: Indicates whether the current memory is in read-write segment.
• addr: Address of memory.
• clk: Clock when access memory this time.
• opcode: The opcode that triggered this memory access.In write-once segment, no corresponding opcode for
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write access, and should be 0 here.
• is_write: Indicates whether this memory access is write.
• value: Value in the memory cell.
• diff_addr: Address difference between two rows.
• diff_addr_inv: The reciprocal of the address difference between the two rows.Only used in read-write segment,

in write-once segment, should be 0.
• diff_clk: Clock difference between two rows.Only used in read-write segment, in write-once segment, should be

0.
• diff_addr_cond:

– Read-write segment: Should be 0 here.
– Ecdsa segment: p′′ − addr.
– Poseidon segment: p′ − addr.
– Prophet segment: p− addr.

• filter_looked_for_main: Filter column for cross table lookup between cpu table and memory table, should be 0
when opcode is 0 and 1 otherwise.

• rw_addr_unchanged: Indicates current address is in read-write segment, and address is the same as the last row.
• region_prophet: Indicates current address is in prophet segment.
• region_poseidon: Indicates current address is in poseidon segment.
• region_ecdsa: Indicates current address is in ecdsa segment.
• rc_value: Value used for range check.

– Read-write segment: Should be diff_clk(addr not changed) or diff_addr(addr changed).
– Write-once segments: Should be diff_addr_cond.

• filter_looking_rc: Filter column for cross table lookup between memory table and range-check table, should all
be 1.

2.3.3 Builtin Tables

filter_looked_for_cpu filter_looked_for_memory filter_looked_for_cmp val limb_lo limb_high

1 0 0 0xffff0000 0x0 0xffff

0 1 0 0x1 0x0 0x1

0 0 1 0xe00a0 0xe 0xa0

Table 12: Range Check Table

2.3.3.1 Range check Table
• filter_looked_for_cpu: Filter column for cross table lookup between cpu table and range-check table.
• filter_looked_for_memory: Filter column for cross table lookup between memory table and range-check table.
• filter_looked_for_cmp: Filter column for cross table lookup between comparison table and range-check table.
• val: Value to be range checked.
• limb_lo: Low 16 bits of val.
• limb_high: Hight 16 bits of val.
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In addition to these columns, there are also columns for fixed table lookup including: limb_lo_permuted,
limb_hi_permuted, fix_rc_u16, fix_rc_permuted_lo, fix_rc_permuted_hi.

op0 op1 gte abs_diff abs_diff_inv filter_looking_rc

5 3 1 2 (1/2) 1

2 7 0 5 (1/5) 1

6 6 1 0 0 1

Table 13: Comparison Table

2.3.3.2 Comparison Table
• op0: Comparison first operand.
• op1: Comparison second operand.
• gte: Indicates whether this row is constrained for gte or lt.
• abs_diff: Absolute value of the difference between two operands.
• abs_diff_inv: The reciprocal of abs_diff.
• fliter_looking_rc: Filter column for cross table lookup between comparison table and range-check table.

opcode op0 op1 res op0_0 op0_1 op0_2 op0_3 op1_0 op1_1 op1_2 op1_3 res_0 res_1 res_2 res_3

and 30 10 10 30 0 0 0 10 0 0 0 10 0 0 0

or 2 30 30 2 0 0 0 30 0 0 0 30 0 0 0

xor 10 3 9 10 0 0 0 3 0 0 0 9 0 0 0

Table 14: Bitwise Table

2.3.3.3 Bitwise Table
• opcode: Can be and/or/xor.
• op0: Bitwise first operand.
• op1: Bitwise second operand.
• res: Bitwise result.
• op0_i: i-th limb of op0.
• op1_i: i-th limb of op1.
• res_i: i-th limb of res.
In addition to these columns, there are also some columns used for fixed table lookup.

2.4 Constraints

2.4.1 Constraints for Cpu Table

Instruction encode related constraints
Related columns include instruction, opcode, op_imm, sel_opi_rj, and opcode/builtins selector columns.
op_imm should be binary:

op_immi ∗ (1− op_immi) = 0
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Selectors should be binary:
sel_op0_r0i · (1− sel_op0_r0i) = 0

sel_op0_r1i · (1− sel_op0_r1i) = 0

. . .

sel_op0_r8i · (1− sel_op0_r8i) = 0

sel_op1_r0i · (1− sel_op1_r0i) = 0

sel_op1_r1i · (1− sel_op1_r1i) = 0

sel_op1_r2i · (1− sel_op1_r2i) = 0

. . .

sel_op1_r8i · (1− sel_op1_r8i) = 0

sel_dst_r0i · (1− sel_dst_r0i) = 0

sel_dst_r1i · (1− sel_dst_r1i) = 0

. . .

sel_dst_r8i · (1− sel_dst_r8i) = 0

sel_addi · (1− sel_addi) = 0

sel_muli · (1− sel_muli) = 0

sel_eq · (1− sel_eqi) = 0

sel_asserti · (1− sel_asserti) = 0

sel_movi · (1− sel_movi) = 0

sel_jmpi · (1− sel_jmpi) = 0

sel_cjmpi · (1− sel_cjmpi) = 0

sel_calli · (1− sel_calli) = 0

sel_reti · (1− sel_reti) = 0

sel_mload · (1− sel_mloadi) = 0

sel_mstorei · (1− sel_mstorei) = 0

sel_endi · (1− sel_endi) = 0

sel_range_checki · (1− sel_range_checki) = 0

sel_andi · (1− sel_andi) = 0

sel_ori · (1− sel_ori) = 0

sel_xori · (1− sel_xori) = 0
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sel_noti · (1− sel_noti) = 0

sel_neqi · (1− sel_neqi) = 0

sel_gtei · (1− sel_gtei) = 0

sel_poseidoni · (1− sel_poseidoni) = 0

sel_ecdsai · (1− sel_ecdsai) = 0

Opcode encode constraint:

opcodei − (sel_addi · 234 + sel_muli · 233 + sel_eq · 232 + sel_asserti · 231 + sel_movi · 230 + sel_jmpi · 229

+ sel_cjmpi · 228 + sel_calli · 227 + sel_reti · 226 + sel_mload · 225 + sel_mstorei · 224

+ sel_endi · 223 + sel_range_checki · 222 + sel_andi · 221 + sel_ori · 220 + sel_xori · 219

+ sel_noti · 218 + sel_neqi · 217 + sel_gtei · 216 + sel_poseidoni · 215 + sel_ecdsai · 214) = 0

Instruction encode constraint:

instructioni − (op1_immi · 262 + sel_op0_r8i · 261 + sel_op0_r7i · 260 + sel_op0_r6i · 259 + sel_op0_r5i · 258

+ sel_op0_r4i · 257 + sel_op0_r3i · 256 + sel_op0_r2i · 255 + sel_op0_r1i · 254 + sel_op0_r0i · 253

+ sel_op1_r8i · 252 + sel_op1_r7i · 251 + sel_op1_r6i · 250 + sel_op1_r5i · 249 + sel_op1_r4i · 248

+ sel_op1_r3i · 247 + sel_op1_r2i · 246 + sel_op1_r1i · 245 + sel_op1_r0i · 244 + sel_dst_r8i · 243

+ sel_dst_r7i · 242 + sel_dst_r6i · 241 + sel_dst_r5i · 240 + sel_dst_r4i · 239 + sel_dst_r3i · 238

+ sel_dst_r2i · 237 + sel_dst_r1i · 236 + sel_dst_r0i · 235 + opcodei) = 0

Operands and their selector constraints
Define the following virtual columns:

˜enable_op0i =
8∑

x=0

sel_op0_rxi

˜enable_op0i =
8∑

x=0

sel_op0_rxi

˜enable_op0i =
8∑

x=0

sel_op0_rxi

Register selector constraints:
˜enable_op0i · (1− ˜enable_op0i) = 0

˜enable_op1i · (1− ˜enable_op1i) = 0

˜enable_dsti · (1− ˜enable_dsti) = 0

Copy constraints between and related register:

˜enable_op0i · (op0i −
8∑

x=0

sel_op0_rxi · regxi) = 0

˜enable_op1i · (op1i −
8∑

x=0

sel_op1_rxi · regxi) = 0
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˜enable_dsti · (dsti −
8∑

x=0

sel_dst_rxi · regxi+1) = 0

If op1_imm is 1, then op1 equals the immediate value:

op1_immi · (op1i − immediate_valuei) = 0

Only one operation selector can be enabled at a time:

1− (sel_addi + sel_multi + sel_eqi + sel_asserti + sel_movi + sel_jmpi + sel_cjmpi + sel_calli

+ sel_reti + sel_mloadi + sel_mstorei + sel_endi + sel_range_checki + sel_andi + sel_ori + sel_xori

+ sel_noti + sel_neqi + sel_gtei + sel_poseidoni + sel_ecdsai) = 0

Context state transition constraints
clk:

(1− sel_endi) · (clki+1 − (clki + 1)) = 0

Registers:
For common register, its value changes only when the register is used as dst:

(1− sel_dst_r0i) · (reg0i+1 − reg0i) = 0

(1− sel_dst_r1i) · (reg1i+1 − reg1i) = 0

(1− sel_dst_r2i) · (reg2i+1 − reg2i) = 0

(1− sel_dst_r3i) · (reg3i+1 − reg3i) = 0

(1− sel_dst_r4i) · (reg4i+1 − reg4i) = 0

(1− sel_dst_r5i) · (reg5i+1 − reg5i) = 0

(1− sel_dst_r6i) · (reg6i+1 − reg6i) = 0

(1− sel_dst_r7i) · (reg7i+1 − reg7i) = 0

Reg8 is usually used as fp:

sel_reti · (reg8i+1 − aux0i) + (1− sel_reti) · (1− sel_dst_r8i) · (reg8i+1 − reg8i) = 0

pc:
Opcodes related to pc state transitions include: jmp, cjmp, call, ret.
Define virtual column ˜instruction_size as instruction size which equals pc default increment:

˜instruction_sizei = (1− sel_mloadi − sel_mstorei) · (1 + op1_immi) + (sel_mloadi + sel_mstorei) · 2

When current opcode is jmp, the constraint fragment is:

sel_jmpi · op1i
When current opcode is cjmp, the constraint fragment is:

sel_cjmpi · ((1− op0i) · (pci + ˜instruction_sizei) + op0i · op1i)

And cjmp need op0 to be binary:

sel_cjmpi · op0i · (1− op0i) = 0

When current opcode is call, related trace cells in cpu table are in Table 15:
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op0 op1 dst aux0 aux1

fp-1 target_pc ret_pc fp-2 ret_pc

Table 15: Trace of call

Op0 is the address of fp-1, dst is the value of fp-1 in memory.Similarly, aux0 is the address of fp-2, aux1 is the
value of fp-2 in memory.This correspondence requires a cross table lookup using clk-opcode-op0-dst and clk-opcode-
aux0-aux1 between cpu table and memory table.And the constraint fragment for call is:

sel_calli · op1i
Also we need to constraint ret_pc for call:

ret_pci − pci − ˜instruction_size)i = 0

When current opcode is ret, related trace cells in cpu table are in Table 16:

op0 op1 dst aux0 aux1

fp-1 0 ret_pc fp-2 ret_pc

Table 16: Trace of ret

We also need to add cross table lookup for ret, and constraint fragment in cpu table for ret is:

sel_reti · op1i
Putting the above together, the constraint on the pc state transition is:

(1− sel_endi) · (pci+1 − ((1− (sel_jmpi + sel_cjmpi + sel_calli + sel_reti)) · ˜instruction_sizei

+ sel_jmpi · op1i + sel_cjmpi · ((1− op0i) · ˜instruction_sizei + op0i · op1i) + sel_calli · op1i
+ sel_reti · op1i)) = 0

Constraints on specific opcode:
ADD:

sel_addi · (dsti+1 − (op0i + op1i)) = 0

MUL:
sel_muli · (dsti+1 − (op0i · op1i)) = 0

EQ/NEQ:
For opcode EQ/NEQ, related trace cells in cpu table are in Table 17:

opcode dst op0 op1 aux0

(eq) 1 5 5 0

(eq) 0 19 6 (1/(19-6))

(neq) 0 5 5 0

(neq) 1 19 6 (1/(19-6))

Table 17: Trace of EQ

Related constraints:

sel_eqi · (dsti · (op0i − op1i) + (1− dsti) · (1− (op0i − op1i) · aux0i)) = 0
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sel_neqi · ((1− dsti) · (op0i − op1i) + (1− dsti) · (1− (op0i − op1i) · aux0i)) = 0

ASSERT:
sel_asserti · (op1i − op2i) = 0

MOV:
sel_movi · (dsti − op1i) = 0

CALL:

sel_calli · ((op0i − (fpi − 1)) + (op1_immi · (op1i − pci − 2) + (1− op1_immi) · (op1i − pci − 1))) = 0

RET:
sel_reti · ((op0i + 1− fpi) + (op1i − pci) + (dsti + 2− fpi) + (aux0i − fpi)) = 0

MLOAD/MSTORE:
mstore and mload support relative addressing, related trace cells are in Table 18:

opcode op0 op1 dst aux0 aux1

(mload) . . . anchor_addr value offset addr

(mstore) value anchor_addr . . . offset addr

Table 18: Trace of EQ

When op1_imm = 1, aux0 need to be 0:

sel_mloadi · op1_immi ∗ aux0i = 0

sel_mstorei · op1_immi ∗ aux0i = 0

When 0p1_imm = 0, aux0 should be the immediate value in the instruction:

sel_mloadi · (1− op1_immi) · (aux0i − immediate_valuei) = 0

sel_mstorei · (1− op1_immi) · (aux0i − immediate_valuei) = 0

2.4.2 Constraints for Memory Table

Regional division of memory
In general, the memory table is divided into two areas, read-write and write-once, which are indicated in green

and yellow respectively in Table 11. In the write-once area, it is subdivided into three small areas according to different
uses: prophet area, poseidon area, and ecdsa area, and the available size of each small area is: span = 232 − 1.Define
p = 264 − 232 + 1, p′ = p− span, p′′ = p′ − span, p′′′ = p′′ − span.The address upper limit for each of these three
small areas are p − 1, p′ − 1, p′′ − 1, The starting addresses of these three small areas are p′, p′′, p′′′. Each small
area has a corresponding flag column, the correctness of the flag column is ensured by a range check of the difference
between the upper limit and address.Finally, the read-write area is in a four-choice relationship with the three small
areas mentioned above, and the flag of the read-write area can be constrained by this relationship.
Constraints

opcode:

opcodei · (opcodei − op_mload) · (opcodei − op_mstore) · (opcodei − op_call) · (opcodei − op_ret) = 0
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When opcode is 0, is_rw must be 0:

(opcodei − op_mload) · (opcodei − op_mstore) · (opcodei − op_call) · (opcodei − op_ret) · is_rwi = 0

The relationship between is_write and opcode:
For the write case, the opcode may be mstore, call, prophet write; For read, opcode may be mload, call and ret;

When opcode is call, it may be read or write, so we need not constraint is_write for call:

(opcodei − op_mload) · (opcodei − op_ret) · (opcodei − op_call) · (1− is_writei) = 0

opcodei · (opcodei − op_mstore) · (opcodei − op_call) · is_writei = 0

filter_looked_for_main:
opcodei · (1− filter_lookup_for_maini) = 0

Constraints for diff_addr:
diff_addr is mainly used in the rw segment to perform a range check on the difference of addresses to ensure the

correctness of the incremental sorting of addresses.The corresponding auxiliary column diff_addr_inv is the reciprocal
of diff_addr (or 0) and is used to limit diff from unpredictable values to 0/1 to constrain it with rw_addr_changed.

The diff_addr constraint will span the boundary between the two regions, except that the diff_addr after the span
does not need to be range checked.

addri+1 − addri − diff_addri+1 = 0

For rw_addr_changed:
rw_addr_unchanged0 = 0

is_rwi · (1− rw_addr_changedi − diff_addri · diff_addr_invi) = 0

For region select:

is_rwi + region_propheti + region_poseidoni + region_ecdsai − 1 = 0

Different regions of diff_addr_cond have different meanings:

region_propheti · (p− addri − diff_addr_condi) = 0

region_poseidoni · (p′ − addri − diff_addr_condi) = 0

region_ecdsai · (p′′ − addri − diff_addr_condi) = 0

Use region_prophet, region_poseidon, and region_ecdsa as filters to perform range check on diff_addr_cond.
Binary constraints:

is_rwi · (1− is_rwi) = 0

region_propheti · (1− region_propheti) = 0

region_poseidoni · (1− region_poseidoni) = 0

region_ecdsai · (1− region_ecdsai) = 0

Constraints for write-once region: In the write-once region, the address is incremented by 1 or remains unchanged:

(1− is_rwi) · (1− region_propheti+1 + region_propheti) · (1− region_poseidoni+1 + region_poseidoni)

· (addri+1 − addri) · (addri+1 − addri − 1) = 0
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Write-once constraint, the opcode must be mload if the address is not incremented by 1:

(1− is_rwi) · (1− region_propheti+1 + region_propheti) · (1− region_poseidoni+1 + region_poseidoni)

· (addri+1 − addri − 1) · is_writei+1 = 0

Constraints for read or write: First opcode for each address must be write(mstore or 0) and the next row must be
mload and value remains unchanged:

is_write0 − 1 = 0

(addri+1 − addri) · (1− is_writei+1) = 0

(1− is_writei+1) · (valuei+1 − valuei) = 0

Constraints for rc_value: The value of rc_value in the line where is_rw is 1 is the non-zero value of diff_addr and
diff_clk (0 if both are 0); rc_value equals diff_addr_cond when is_rw is 0.

is_rwi · (diff_addri + diff_clki − rc_valuei) = 0

(1− is_rwi) · (diff_addr_condi − rc_valuei) = 0

For filter_looking_rc, it must be 1 in read-write region and must be 1 for read in write-once region.

is_rwi · (1− filter_looking_rci) = 0

(1− is_rwi) · (1− is_writei) · (1− filter_looking_rci) = 0

2.4.3 Constraints for Builtins

Range check table constraints: Constraint val is the combination of limb_lo and limb_hi:

vali − limb_lo− limb_hi · 216

In addition, limb_lo and limb_hi need to perform lookup with fixed table which contains 0 to 216 − 1.

Comparison table constraints: gte is binary:

gtei · (1− gtei) = 0

Constraints for abs_diff:
gtei · (op0i − op1i − abs_diffi) = 0

(1− gtei) · (op1i − op0i − abs_diffi) = 0

Constrains for abs_diff_inv:

(1− gtei) · (1− abs_diffi · abs_diff_invi) = 0

Lookups:
• op0, op1, dst in CPU table need to perform cross table lookup with op0, op1, gte in comparison table.
• abs_diff column needs to perform cross table lookup with value column in range check table.
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Bitwise table constraints:

op0i − op0_0i − op0_1i · 28 − op0_2i · 216 − op0_3i · 224 = 0

op1i − op1_0i − op1_1i · 28 − op1_2i · 216 − op1_3i · 224 = 0

dsti − dst_0i − dst_1i · 28 − dst_2i · 216 − dst_3i · 224 = 0

Lookups:
• opcode, op0, op1, dst in cpu table need to perform cross table lookup with opcode, op0, op1, res in bitwise table.
• Bitwise computation needs to lookup with fixed table.

3 Ola-Lang: Dev-friendly Smart Contract Language

Ola-lang is a high-level programming language for developing OlaVM smart contracts. It is Turing complete and
can be used to write arithmetic programs.

The computing process is proven by the OlaVM back-end proof system, which verifies that the OlaVM processing
is accurate.

Most of the existing programming languages in the ZKP field require fundamental knowledge of the circuit field,
which is not universal, or the execution process is difficult to proven and verified by ZKP.

3.1 Language Introduction

From a developer’s point of view, Ola’s syntax is close to that of C/C++ and Rust, which allows most developers to
learn and develop various Dapps using Ola quickly. At the same time, the Ola language is also a ZK-friendly language,
but we do not expose the ZK-friendly design directly to the developers. We try to make the Ola language as smooth to
use as the traditional high-level languages such as Rust, leaving the ZK-friendly design support to be handled by the
compiler and OlaVM.

Ola’s primary design goal:
• Security: The results of the program executions are deterministic, declared at the language level/syntax, and

guaranteed at the compiler level.
• Efficiency: The speed of execution and proof of the program is well balanced to be efficient.
• Universal: Easy to use and readable code, it is developer friendly with minimal learning thresholds for developers

familiar with mainstream programming languages such as C++/Rust, to quickly get into writing arithmetic
programs.

• Turing complete: Ola can be used for complex programs such as loops, recursion, etc.

3.2 Language Elements

3.2.1 Variables

Identifier

Identifier consist of numbers (0-9), ASCII uppercase and lowercase letters (a-zA-Z), underscores (_). Identifier
cannot start with a number.
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fn foo () {
// declare and ine `_variable `
u32 _variable = 2; // identifiers start with "_"
// u32 0a = 2; define error , identifiers can 't start with number

}

Declaration

Variables need to be declared before used. To avoid variables being undefined, it needs to be initialized at
declaration time.

fn foo () {
// declare and define `a`
u32 a = 2;
// redefine `a`
a = 3;

}

Scope

For security reasons, variable definitions do not support Shadowing. If you need multiple adjacent variables with
similar logical meanings, use a variable or type suffix.

fn foo () {
u32 a = 5;
{

u32 a = 25; // compile error : redeclared variable 'a'
};
u32 a = 25; // compile error : redeclared variable 'a'

a = 25; // ok
}

Variables have a scope that is restricted to the current function, whereas constants do not.
Global variables are not supported.

fn foo () -> (u32) {
// return a; <- not allowed
return 2;

}

fn bar () -> (u32) {
u32 a = 2;
return foo ();

}

Variables in a for-loop are scoped only inside the loop.
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fn foo () -> (u32) {
u32 a = 0;
for (u32 i = 0; i < 5; i++) {

a = a + i;
}
// return i; <- not allowed
return a;

}

3.2.2 Data Type

Ola is a statically typed language, and variable types must be known at compile time to avoid most runtime
exceptions. Two basic types and multiple complex types are supported.

Basic Types

The basic types include integer and boolean types.
There are several types of integer types: u32, u64, and u256, and currently only u32 operations are supported

now. All types are built based on the field type. Ola provides the above-mentioned basic libs of various integer types
based on the field implementation, which is convenient for developers to write complex logic.

u32 a = 2; // u32
u64 b = 2; // u64
u64 b = 0 xffffl ; // u64
u256 d = 102411 ll; // u256

bool a = true;
bool b = false ;

Arrays

Ola supports statically typed arrays. The data types of array elements must be consistent, and the array size must
be determined at compile time.

Array elements are numbered from zero and are accessed using [index] for addressing.
Array declarations must be initialized, and the array declaration format is type and [] (type []), and the array

size must be specified. Two ways to initialize arrays are provided:
• Split the list of elements by commas, [array_element1,array_element2,...].
• Array declaration and initialization with consistent array elements, [array_value; size].

u32 [5] a = [1, 2, 3, 4, 5];
bool [3] b = [true; 3]; // initialize a bool array with value true

38



Two-dimensional Arrays

Two-dimensional arrays are declared and used similarly to one-dimensional arrays, except that the internal elements
of a two-dimensional array are also one-dimensional arrays.

Declare type [row_size][col_size], and initialize [[],[],...].

// Array of two elements of an array of 3 elements

u32 [2][4] a = [[1 , 2, 3, 4] ,[4 , 5, 6, 7]];

u32 [4] b = a[1]; // should be [4, 5, 6, 7]

Array Slicing

Similar to Rust, arrays can be created by slicing an array to copy the generated array,

u32 [5] a = [1, 2, 3, 4, 5];
u32 [2] b = a [2..4]; // initialize an array copying a slice from `a`
// array b is [3, 4, 5]

Tuples

A collection composed of multiple types of elements, each element can be accessed through . (for example, t.0,
t.1, etc.).

fn main () -> (bool) {
(u32 [2] , bool) v = ([1 , 2], true);
v.0 = [2, 3];
return v.1;

}

Structs

A combination of multiple data types forms a new custom combination type. Struct members are accessed via .

(struct_name.struct_field)

struct Person {
age: u32 ,
id: u64 ,

}

fn foo () {
Person person = Person {

age: 18,
id: 123456789 ,

};
person .age = 25;

}
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Enumerations

The enumeration type is defined by the keyword enum.

contract Foo {
u256 const x = 56;
enum ActionChoices {

GoLeft ,
GoRight ,
GoStraight ,
Sit

}
ActionChoices const choices = ActionChoices . GoLeft ;

}

Type Alias

To increase code readability, defining a type alias for each type is supported. At compile time, the type alias will
be replaced with real types.

type balance = u256;

fn main () -> ( balance ) {
balance a = 32;
a -= 2;
return a;

}

3.2.3 Constant

Constants can only be declared as constant expressions when defined with the const keyword.
Compile time determination cannot be redeclared and assigned, that is, once defined, it can only be used within

its scope, and it is recommended to declare with all capital letters and _ concatenation.

const u32 ONE = 1;
const u32 TWO = ONE + ONE;

const u32 HASH_SIZE = 256;

fn hash_size () -> (u32) {
return HASH_SIZE ;

}

3.2.4 Operators

Ola Provides operators such as arithmetic, boolean, relational, bitwise, and so on.
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Operator Example Explanation

+ a + b Integer addition

- a - b Integer subtraction

* a * b Integer multiplication

/ a / b Integer division

% a % b The modulo of integer division

** a ** b Power

Table 19: Arithmetic operators

Operator Example Explanation

&& a && b Boolean operator AND

|| a || b Boolean operator OR

! !a Boolean operator NEGATION

Table 20: Boolean operators

Arithmetic operators

Arithmetic operators can be combined with the assignment operator = to form new compound operators +=, -=,
*=, /=, %=, with arithmetic operators having higher priority than compound operators.

Boolean operators

Support with OR (||), NOT (!), AND (&&) with the latter having higher priority.

Relational operators

The return result of the relational operator is type bool

Bitwise operators

Bitwise operators containing bitwise or and non and shift operations.
Bitwise operators can be combined with the assignment operator = to form the new compound operators &=, |=,

^=, <<=, >>=, with bitwise operators taking precedence over compound operators.

Operator Example Explanation

== a == b equal

!= a != b not equal

< a < b less than

> a > b greater than

<= a <= b less than or equal to

>= a >= b greater than or equal to

Table 21: Relational operators
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Operator Example Explanation

& a & b Bitwise and

| a | b Bitwise or

^ a ^ b Bitwise xor

<< a << 3 left shift

>> a >> 3 right shift

~ ~a Bitwise complement

Table 22: Bitwise operators

3.2.5 Control Flow

Conditional statement

Control conditional branch and select different branch programs to execute according to different conditions. If
the expression value is nonzero, the branch body is executed. It comes in two forms:

• Contains only single branch if: if conditional_expression {statements}.
• Contains multiple branches of if and else: if conditional_expression {statements}

else {statements}.

fn foo(u32 a) -> u32 {

// Similar to rust , the result of a conditional expression
// can be received directly by the variable
u32 b = if (a + 1 == 2) { 1 } else { 3 };
return b;

}

Note: Conditional statements support ternary conditional operators.

fn foo(u32 a) -> u32 {
u32 b = a + 1 == 2 ? 1 : 3;
return b;

}

Loop statement

Repeats the statement within the loop for a specified number of times based on the loop condition.
for-loop statement is supported. Its syntax is

for (init_expression; conditional_expression; loop_expression) {statements}.
The execution process is:

1. Calculate the init_expression, namely the loop initialization.
2. Calculate the conditional_expression. If the result is true, the loop body statements is executed,

followed by the loop_expression.
3. If the result is false, for-loop statement terminates. Sequential execution starts with the next statement.

fn foo () -> u32 {
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u32 res = 0;
for (u32 i = 0; i <= 10; i++) {

res = res + i;
}
return res;

}

3.2.6 Functions

It is the basic module unit of Ola, containing declarations and statements.
If the fn keyword is used, the function name must be explicitly provided. parameters, and return values are

optional, and parameters are passed by value.
The function return type must be specified after ->.

• When a function call occurs, control permissions is passed from the calling function to the called function, and
the parameters are passed to the called function by value.

• The called function return to the calling function through the return statement, and returns the return value to
the calling function.

The basic syntax is:

fn function_name ( parameter_declaration_list ) -> return_parameter_list {
// compound - statement
statements
return_statement

}

e.g.:

fn foo () -> u32 {
return sum (1u, 2u);

}

fn sum(u32 a, u32 b) -> u32 {
/*

* Unlike rust , the return value of
* a function must be a combination of return and return value
*/

return a + b;
}

3.2.7 Imports

To use the code from other files, we can import them into our program using the keyword import and as with the
corresponding file name. Using import makes it easier for us to import some modular libs, eliminating the need for
repeated development. The basic syntax is as follows, path-spec can be an absolute path (the full path of the source
file) or relative path (file path starts with ./ or ../).

import "path -spec";
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import "path -spec" as alias_name ;

e.g.:

import "./ math/ uint256 .ola";
import " crypto / sha256 .ola" as sha256 ;

3.2.8 Comment Lines

They are in-code documentation. When comments are inserted into the code, the compiler simply ignores them.
Comment lines only serve as an aid in understanding the code.

Single-line comments start with // and multi-line subsubsubsection comments start with /* and end with */.
Single line using //:

// Using this , we can comment on a line.
fn main(u32 a) -> u32 {

u32 b = a + 1 == 2 ? 1 : 3;
return b;

}

Multi-line subsubsubsection comments using /* and */:

fn sum(u32 a, u32 b) -> u32 {
/*

* Unlike rust , the return value of
* a function must be a combination of return and return value
*/

return a + b;
}

3.2.9 Keywords and Reservation Words

Keywords

The following Table 23 shows the keywords and reserved words for ola-lang.

Reservation keywords

pub
impl
while
do
loop
use
match
static
u128
in
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Keywords Explanation
const Constants declaration

type Type alias declaration

struct Structure declaration

enum Definition of a enum

fn Function declaration

for Conditional loop based on the result of the expression

if Result selection branches based on conditional expressions

else Candidate statements for ‘if’ control flow

return Function returns results

bool Boolean value

u32 uint32 value

u64 uint64 value

u256 uint256 value

true boolean true

false boolean false

assert Assertion of the input expression

import Importing other files

contract Definition of a smart contract

Table 23: Ola language keywords

3.3 Grammar

Ola’s grammar is defined using the EBNF format file. The content of this EBNF file includes contract definitions,
import instructions, type definitions, variable declarations, structure definitions, enumeration definitions, function
definitions, and so on.

Rule SourceUnit

Figure 13: SourceUnit

rule SourceUnit ::=
SourceUnitPart *

;

The SourceUnit rule represents the top-level structure of a smart contract source file. It consists of a sequence of
source unit parts.
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Rule SourceUnitPart

Figure 14: SourceUnitPart

rule SourceUnitPart ::=
ContractDefinition

| ImportDirective
;

The SourceUnitPart rule describes the elements that can appear at the top level of a source file. These elements
can be either contract definitions or import directives.

Rule ImportDirective

Figure 15: ImportDirective

rule ImportDirective ::=
'import ' StringLiteral ';'

| 'import ' StringLiteral 'as ' Identifier ';'
;

The ImportDirective rule defines the syntax for importing other source files into the current file. There are two
forms of import directives: a simple import and an import with an alias.

Rule Type

rule Type ::=
'bool '

| 'u32'
| 'u64'
| 'u256 '
;

The Type rule defines the basic types available in the language. These include boolean values (bool), 32-bit
unsigned integers (u32), 64-bit unsigned integers (u64), and 256-bit unsigned integers (u256).
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Figure 16: Type

Rule IdentifierOrError

Figure 17: IdentifierOrError

rule IdentifierOrError ::=
Identifier

|
;

The IdentifierOrError rule represents either an identifier or an empty element, which can be useful for optional
parts of the grammar.

Rule VariableDeclaration

Figure 18: VariableDeclaration

rule VariableDeclaration ::=
Precedence 0 IdentifierOrError

;

The VariableDeclaration rule defines the syntax for declaring a variable. A variable is declared by specifying a
type, followed by an optional identifier.
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Rule StructDefinition

Figure 19: StructDefinition

rule StructDefinition ::=
'struct ' IdentifierOrError '{' ( VariableDeclaration ';' ) * '}'

;

The StructDefinition rule defines the syntax for declaring a struct type. A struct is a composite data type that
groups together variables under a single name.

Rule ContractPart

Figure 20: ContractPart

rule ContractPart ::=
StructDefinition

| EnumDefinition
| VariableDefinition
| FunctionDefinition
| TypeDefinition
| ';'
;

The ContractPart rule defines the elements that can appear within a contract definition. These elements include
struct definitions, enum definitions, variable definitions, function definitions, and type definitions.
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Figure 21: ContractDefinition

Rule ContractDefinition

rule ContractDefinition ::=
'contract ' IdentifierOrError '{' ( ContractPart ) * '}'

;

The ContractDefinition rule defines the syntax for declaring a smart contract. A contract is a collection of data
and functions that can be executed on a blockchain.

Rule EnumDefinition

Figure 22: EnumDefinition

rule EnumDefinition ::=
'enum ' IdentifierOrError '{' Comma !( IdentifierOrError ) '}'

;

The EnumDefinition rule defines the syntax for declaring an enumeration type. An enumeration is a data type
consisting of a set of named values.

Rule VariableDefinition

Figure 23: VariableDefinition

rule VariableDefinition ::=
Precedence 0 VariableAttribute * IdentifierOrError ( '=' Expression ) ? ';'

| Precedence 0 VariableAttribute * Identifier ';'
;

The VariableDefinition rule defines the syntax for defining a variable within a contract. Variables can have
attributes such as "const" or "mut" to indicate whether they are constant or mutable.
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Rule TypeDefinition

Figure 24: TypeDefinition

rule TypeDefinition ::=
'type ' Identifier '=' Precedence 0 ';'

;

The TypeDefinition rule defines the syntax for creating a new type alias. A type alias is a way to give a new name
to an existing type, which can be useful for improving code readability and maintainability.

Rule VariableAttribute

Figure 25: VariableAttribute

rule VariableAttribute ::=
'const '
| 'mut '
;

The VariableAttribute rule defines the attributes that can be applied to a variable. There are two possible attributes:
const and mut. The const attribute indicates that the variable’s value cannot be changed after it is initialized, while
the mut attribute indicates that the variable’s value can be modified.

Rule Expression

Figure 26: Expression

rule Expression ::=
Precedence 14
;

The Expression rule represents any valid expression in the language. In this case, it refers to the highest level of
precedence, Precedence14.
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Rule Precedence14

Figure 27: Precedence14

rule Precedence 14 ::=
Precedence 13 '=' Precedence 14
| Precedence 13 '|=' Precedence 14
| Precedence 13 '^=' Precedence 14
| Precedence 13 '&=' Precedence 14
| Precedence 13 '<<=' Precedence 14
| Precedence 13 '>>=' Precedence 14
| Precedence 13 '+=' Precedence 14
| Precedence 13 '-=' Precedence 14
| Precedence 13 '*=' Precedence 14
| Precedence 13 '/=' Precedence 14
| Precedence 13 '%=' Precedence 14
| Precedence 13 '?' Precedence 14 ':' Precedence 14
| Precedence 13
;

The Precedence14 rule defines the various assignment and conditional operators with the highest precedence
level. This includes assignment, bitwise OR assignment, bitwise XOR assignment, bitwise AND assignment, left shift
assignment, right shift assignment, addition assignment, subtraction assignment, multiplication assignment, division
assignment, modulo assignment, and the ternary conditional operator.

Rule Precedence13
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Figure 28: Precedence13

rule Precedence 13 ::=
Precedence 13 '||' Precedence 12
| Precedence 12
;

The Precedence13 rule represents the logical OR operator, which has lower precedence than assignment and
conditional operators. It allows combining multiple conditions using the “||” symbol.

Rule Precedence12

Figure 29: Precedence12

rule Precedence 12 ::=
Precedence 12 '&&' Precedence 11
| Precedence 11
;

The Precedence12 rule defines the logical AND operator, which has a lower precedence than the logical OR
operator. It is used to combine multiple conditions using the “&&” symbol.

Rule Precedence11

rule Precedence 11 ::=
Precedence 11 '==' Precedence 10

| Precedence 11 '!=' Precedence 10
| Precedence 10
;

The Precedence11 rule defines a non-terminal that represents operators with the same precedence level. It has
two productions: the first production specifies the equality operator (‘==’) and the next higher precedence non-terminal
Precedence10, while the second production specifies the inequality operator (‘!=’) and Precedence10. If neither of

52



Figure 30: Precedence11

these cases applies, Precedence10 is directly considered as the result of this rule. This rule is a useful part of writing a
parser or compiler for a programming language, as it can be used to specify operator precedence and associativity.

Rule Precedence10

Figure 31: Precedence10

rule Precedence 10 ::=
Precedence 10 '<' Precedence 9

| Precedence 10 '>' Precedence 9
| Precedence 10 '<=' Precedence 9
| Precedence 10 '>=' Precedence 9
| Precedence 9
;

The Precedence10 rule defines a non-terminal that represents operators with the same precedence level. It has
five productions, each representing a comparison operator (‘<’, ‘>’, ‘<=’, ‘>=’), followed by the next higher precedence
non-terminal Precedence9. If none of these cases apply, Precedence9 is directly considered as the result of this rule.
This rule is often used in writing a parser or compiler for a programming language, as it specifies the precedence and
associativity of comparison operators.

Rule Precedence9
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Figure 32: Precedence9

rule Precedence 9 ::=
Precedence 9 '|' Precedence 8

| Precedence 8
;

The Precedence9 rule defines a non-terminal that represents operators with the same precedence level. It has two
productions: the first production specifies the logical OR operator (‘|’) and the next higher precedence non-terminal
Precedence8, while the second production simply specifies Precedence8. If neither of these cases applies, Precedence8
is directly considered as the result of this rule. This rule is often used in writing a parser or compiler for a programming
language, as it specifies the precedence and associativity of logical OR operators.

Rule Precedence8

Figure 33: Precedence8

rule Precedence 8 ::=
Precedence 8 '^' Precedence 7

| Precedence 7
;

The Precedence8 rule defines a non-terminal that represents operators with the same precedence level. It has two
productions: the first production specifies the bitwise XOR operator (‘^’) and the next higher precedence non-terminal
Precedence7, while the second production simply specifies Precedence7. If neither of these cases applies, Precedence7
is directly considered as the result of this rule. This rule is often used in writing a parser or compiler for a programming
language, as it specifies the precedence and associativity of bitwise XOR operators.

Rule Precedence7

rule Precedence 7 ::=
Precedence 7 '&' Precedence 6

| Precedence 6

54



Figure 34: Precedence7

;

The Precedence7 rule defines a non-terminal that represents operators with the same precedence level. It has two
productions: the first production specifies the bitwise AND operator (‘&’) and the next higher precedence non-terminal
Precedence6, while the second production simply specifies Precedence6. If neither of these cases applies, Precedence6
is directly considered as the result of this rule. This rule is often used in writing a parser or compiler for a programming
language, as it specifies the precedence and associativity of bitwise AND operators.

Rule Precedence6

Figure 35: Precedence6

rule Precedence 6 ::=
Precedence 6 '<<' Precedence 5

| Precedence 6 '>>' Precedence 5
| Precedence 5
;

The Precedence6 rule defines a non-terminal that represents operators with the same precedence level. It has
three productions: the first production specifies the bitwise left shift operator (‘<<’) and the next higher precedence
non-terminal Precedence5, the second production specifies the bitwise right shift operator (‘>>’) and Precedence5,
while the third production simply specifies Precedence5. If neither of the first two cases applies, Precedence5 is directly
considered as the result of this rule. This rule is often used in writing a parser or compiler for a programming language,
as it specifies the precedence and associativity of bitwise left shift and bitwise right shift operators.

Rule Precedence5

rule Precedence 5 ::=
Precedence 5 '+' Precedence 4
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Figure 36: Precedence5

| Precedence 5 '-' Precedence 4
| Precedence 4
;

The Precedence5 rule defines a non-terminal that represents operators with the same precedence level. It has
three productions: the first production specifies the addition operator (‘+’) and the next higher precedence non-terminal
Precedence4, the second production specifies the subtraction operator (‘-’) and Precedence4, while the third production
simply specifies Precedence4. If neither of the first two cases applies, Precedence4 is directly considered as the result
of this rule. This rule is often used in writing a parser or compiler for a programming language, as it specifies the
precedence and associativity of addition and subtraction operators.

Rule Precedence4

Figure 37: Precedence4

rule Precedence 4 ::=
Precedence 4 '*' Precedence 3

| Precedence 4 '/' Precedence 3
| Precedence 4 '%' Precedence 3
| Precedence 3
;

The Precedence4 rule defines a non-terminal that represents operators with the same precedence level. It has four
productions: the first production specifies the multiplication operator (‘*’) and the next higher precedence non-terminal
Precedence3, the second production specifies the division operator (‘’/’) and Precedence3, the third production specifies
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the modulus (or remainder) operator (‘%’) and Precedence3, while the fourth production simply specifies Precedence3.
If none of the first three cases apply, Precedence3 is directly considered as the result of this rule. This rule is often
used in writing a parser or compiler for a programming language, as it specifies the precedence and associativity of
multiplication, division, and modulus operators.

Rule Precedence3

Figure 38: Precedence3

rule Precedence 3 ::=
Precedence 2 '**' Precedence 3

| Precedence 2
;

The Precedence3 rule defines a non-terminal that represents operators with the same precedence level. It has
two productions: the first production specifies the exponentiation operator (‘**’) and the next higher precedence non-
terminal Precedence2, while the second production simply specifies Precedence2. If the first case applies, Precedence3
is considered as the result of the operation Precedence2 raised to the power of Precedence3. Otherwise, Precedence2 is
directly considered as the result of this rule. This rule is often used in writing a parser or compiler for a programming
language, as it specifies the precedence and associativity of exponentiation operators.

Rule Precedence2

Figure 39: Precedence2

rule Precedence 2 ::=
'!' Precedence 2

| '~' Precedence 2
| Precedence 0
;
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The Precedence2 rule defines a non-terminal that represents operators with the same precedence level. It
has three productions: the first production specifies the logical NOT operator (‘!’) and the same precedence non-
terminal Precedence2, the second production specifies the bitwise NOT operator (‘~’) and Precedence2, while the third
production simply specifies Precedence0. If either of the first two cases applies, the operator is applied to the result of
Precedence2. Otherwise, Precedence0 is directly considered as the result of this rule. This rule is often used in writing
a parser or compiler for a programming language, as it specifies the precedence and associativity of logical NOT and
bitwise NOT operators.

Rule NamedArgument

Figure 40: NamedArgument

rule NamedArgument ::=
Identifier ':' Expression

;

The NamedArgument rule defines a non-terminal that represents a named argument in a function or method call.
It consists of an Identifier followed by a colon and an Expression. The Identifier represents the name of the argument,
while the Expression represents its value. This rule is often used in programming languages that support named
arguments, allowing for more readable and self-documenting code.

Rule FunctionCall

Figure 41: FunctionCall

rule FunctionCall ::=
Precedence 0 '(' Comma !( Expression ) ')'

| Precedence 0 '(' '{' Comma !( NamedArgument ) '}' ')'
;

The FunctionCall rule defines a non-terminal that represents a function or method call. It has two productions:
the first production specifies an ordered argument list, where the function or method is represented by Precedence0,
and the arguments are represented by a comma-separated list of Expression. The second production specifies a named
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argument list, where the function or method is represented by Precedence0, and the arguments are represented by a
comma-separated list of NamedArgument enclosed in braces. This rule is often used in programming languages to
represent function or method calls, with the syntax varying depending on the language’s support for named arguments
and other features.

Rule Precedence0

Figure 42: Precedence0

rule Precedence 0 ::=
Precedence 0 '++'

| Precedence 0 '--'
| FunctionCall
| Precedence 0 '[' Expression ? ']'
| Precedence 0 '[' Expression ? ':' Expression ? ']'
| Precedence 0 '.' Identifier
| Type
| '[' CommaOne !( Expression ) ']'
| Identifier
| ParameterList
| LiteralExpression
;

The Precedence0 rule defines a non-terminal that represents primary expressions, which are the building blocks
of more complex expressions. It has multiple productions, including the increment and decrement operators (‘++’ and
‘--’), function or method calls (represented by the non-terminal FunctionCall), array indexing with an Expression inside
square brackets, slice notation with two optional Expression separated by a colon inside square brackets, accessing
a member of an object using a dot and an Identifier, type names (represented by the non-terminal Type), an array
literal with one or more comma-separated Expression enclosed in square brackets, an Identifier, a ParameterList, and
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a LiteralExpression. These productions specify the most basic elements that can be combined to form more complex
expressions in a programming language.

Rule LiteralExpression

Figure 43: LiteralExpression

rule LiteralExpression ::=
'true '

| 'false '
| Number
;

The LiteralExpression rule defines a non-terminal that represents literal values in a programming language. It has
three productions: the first production specifies the Boolean value true, the second production specifies the Boolean
value false, and the third production specifies a numeric literal value represented by the non-terminal Number. This
rule is often used in programming languages to represent literal values that can be used in expressions, such as Boolean
values and numeric constants.

Rule Parameter

Figure 44: Parameter

rule Parameter ::=
Expression Identifier ?

;

The Parameter rule defines a non-terminal that represents a parameter in a function or method declaration. It
consists of an Expression followed by an optional Identifier. The Expression represents the default value of the
parameter, while the Identifier represents its name. If the Identifier is not specified, the parameter is treated as an
anonymous parameter. This rule is often used in programming languages to define the parameters of functions or
methods, allowing the caller to pass arguments to the function or method at runtime.
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Rule OptParameter

Figure 45: OptParameter

rule OptParameter ::=
Parameter ?

;

The OptParameter rule defines a non-terminal that represents an optional parameter in a function or method
declaration. It consists of an optional Parameter. If the Parameter is present, it specifies a parameter with a default
value and an optional name, while if it is absent, there is no default value and no name. This rule is often used in
programming languages to provide optional parameters to functions or methods, allowing the caller to omit them if
they are not needed.

Rule ParameterList

Figure 46: ParameterList

rule ParameterList ::=
'(' ')'

| '(' Parameter ')'
| '(' CommaTwo !( OptParameter ) ')'
| '(' ')'
;

The ParameterList rule defines a non-terminal that represents a list of parameters in a function or method
declaration. It has four productions: the first production specifies an empty parameter list, the second production
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specifies a single parameter, the third production specifies two or more parameters separated by commas, and the fourth
production again specifies an empty parameter list. Each parameter is represented by the OptParameter non-terminal,
which itself represents an optional parameter with an optional name and default value. This rule is often used in
programming languages to define the parameters of functions or methods, allowing the caller to pass arguments to the
function or method at runtime.

Rule BlockStatementOrSemiColon

Figure 47: BlockStatementOrSemiColon

rule BlockStatementOrSemiColon ::=
';'

| BlockStatement
;

The BlockStatementOrSemiColon rule defines a non-terminal that represents either a semicolon or a block
statement in a programming language. It has two productions: the first production specifies a semicolon, and the
second production specifies a BlockStatement, which can contain one or more statements enclosed in curly braces.
This rule is often used in programming languages to represent the end of a statement or the beginning of a block
of statements. If the BlockStatementOrSemiColon is a semicolon, it is typically used to indicate the end of a single
statement. If it is a block statement, it is typically used to group multiple statements into a single block that can be
executed together.

Rule FunctionDefinition

Figure 48: FunctionDefinition

rule FunctionDefinition ::=
'fn ' IdentifierOrError ParameterList ( '->' ParameterList ) ?

BlockStatementOrSemiColon
;

The FunctionDefinition rule defines a non-terminal that represents a function definition in a programming language.
It consists of the keyword ’fn’, followed by an identifier that represents the name of the function, followed by a
ParameterList that represents the parameters of the function, and an optional ParameterList that represents the return
type of the function. Finally, it ends with a BlockStatementOrSemiColon that represents the body of the function. This
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rule is often used in programming languages to define functions, which are reusable blocks of code that can be called
from other parts of the program. The parameters of the function represent the input values that the function accepts,
while the return type represents the output value that the function returns.

Rule BlockStatement

Figure 49: BlockStatement

rule BlockStatement ::=
'{' Statement * '}'

;

The BlockStatement rule defines a non-terminal that represents a block of statements in a programming language.
It consists of an opening curly brace, followed by zero or more statements, and finally, a closing curly brace. The
statements can be any valid statement in the programming language. This rule is often used in programming languages
to group multiple statements together into a single block that can be executed as a unit. A block statement can be used
in a variety of contexts, such as in a function body, a loop body, or an if statement body. The block statement allows
the programmer to treat multiple statements as a single entity and can be used to make the code more organized and
easier to read.

Rule OpenStatement

rule OpenStatement ::=
'if ' '(' Expression ')' Statement

| 'if ' '(' Expression ')' ClosedStatement 'else ' OpenStatement
| 'for ' '(' SimpleStatement ? ';' Expression ? ';' SimpleStatement ? ')'

OpenStatement
;

The OpenStatement rule defines a non-terminal that represents an open statement in a programming language. It
has three productions: the first production specifies an “if” statement with a single statement in its body; the second
production specifies an “if-else” statement with two sub-statements, one for the “if” condition and one for the “else”
condition; the third production specifies a “for” loop with an optional initialization statement, an optional condition,
and an optional post-statement, followed by an open statement body. This rule is often used in programming languages

Figure 50: OpenStatement
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Figure 51: ClosedStatement

Figure 52: Statement

to control the flow of execution based on certain conditions or to perform iterative operations on a set of data. The “if”
statement is used to execute a block of code if a certain condition is true. The “if-else” statement is used to execute one
of two blocks of code based on whether a certain condition is true or false. The “for” loop is used to execute a block
of code multiple times while a certain condition is true, and it includes an optional initialization statement, an optional
condition, and an optional post-statement.

Rule ClosedStatement

rule ClosedStatement ::=
NonIfStatement

| 'if ' '(' Expression ')' ClosedStatement 'else ' ClosedStatement
| 'for ' '(' SimpleStatement ? ';' Expression ? ';' SimpleStatement ? ')'

ClosedStatement
| 'for ' '(' SimpleStatement ? ';' Expression ? ';' SimpleStatement ? ')'

';'
;

The ClosedStatement rule defines a non-terminal that represents a closed statement in a programming language.
It has four productions: the first production specifies a non-“if” statements, such as a loop or a function call; the
second production specifies an “if-else” statement with two sub-statements, both of which are closed statements; the
third production specifies a “for” loop with an optional initialization statement, an optional condition, and an optional
post-statement, followed by a closed statement body; the fourth production specifies a “for” loop with an optional
initialization statement, an optional condition, and an optional post-statement, followed by a semicolon. This rule
is often used in programming languages to control the flow of execution based on certain conditions or to perform
iterative operations on a set of data. The closed statement differs from the open statement in that it contains a complete
sub-statement within its body.

Rule Statement
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Figure 53: SimpleStatement

rule Statement ::=
OpenStatement

| ClosedStatement
|
;

This rule is used to define the structure of statements in a programming language. Statements are used to express
an action that needs to be carried out, such as assigning a value to a variable or looping over a set of data. The Statement
rule is often used in the context of defining control structures like loops and conditionals.

Rule SimpleStatement

rule SimpleStatement ::=
VariableDeclaration ( '=' Expression ) ?

| Expression
;

The SimpleStatement rule is used to define a simple statement in a programming language. It has two possible
productions. The first production specifies a VariableDeclaration, which may or may not be followed by an = sign
and an Expression. This allows for the declaration of a variable with an optional initial value. The second production
specifies an Expression, which is a piece of code that evaluates to a value.

Rule NonIfStatement

rule NonIfStatement ::=
BlockStatement

| SimpleStatement ';'
| 'continue ' ';'
| 'break ' ';'
| 'return ' ';'
| 'return ' Expression ';'
;

The NonIfStatement rule is used to define a non-conditional statement in a programming language. It has several
possible productions, including a BlockStatement and a SimpleStatement followed by a semicolon.

The BlockStatement production allows for a block of code to be executed as a single unit and is often used to
group multiple statements. The SimpleStatement followed by a semicolon production allows for a single statement to
be executed.
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Figure 54: NonIfStatement

Figure 55: Comma

In addition, the rule specifies three special types of statements: continue, break, and return. The continue
statement is used to skip to the next iteration of a loop, while the break statement is used to exit a loop. The return
statement is used to exit a function and optionally return a value.

Overall, the NonIfStatement rule is an important part of defining the syntax of a programming language and is
used to express a wide range of statements and behaviors.

Macro Comma

macro Comma <T> ::=

| CommaOne !(T)
;

This is a macro definition for a comma-separated list of elements of type T. It allows for zero or more elements
separated by commas. The ! symbol after the macro name indicates that the macro is left-recursive, meaning it can be
applied repeatedly until it no longer matches. The CommaOne! in the definition means that the macro should match at
least one element before the optional commas.
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Figure 56: CommaOne

Figure 57: CommaTwo

Macro CommaOne

macro CommaOne <T> ::=
T ( ',' T ) *

;

This is a macro definition for a comma-separated list of one or more elements of type T. It first matches a single
element of type T, followed by zero or more occurrences of a comma followed by another element of type T. The *

after the second parentheses indicates that this sequence can repeat zero or more times. This macro enforces that there
must be at least one element in the comma-separated list.

Macro CommaTwo

macro CommaTwo <T> ::=
T ( ',' T ) +

;

The CommaTwo macro is used to match one or more occurrences of the same non-terminal symbol separated by
commas.

Rule Number

rule Number ::=
'r #([1 -9][0 -9]*|0) #'

Figure 58: Number
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Figure 59: Identifier

Figure 60: StringLiteral

| 'r#0x[0 -9A-Fa -f]*# '
;

The Number rule is used to define a number in a programming language. It has two possible productions. The
first production matches a decimal number, while the second production matches a hexadecimal number.

Rule Identifier

rule Identifier ::=
'r #[$_][a-zA -Z][a-zA -Z$_0 -9]# '
;

The Identifier rule is used to define an identifier in a programming language. It matches a sequence of characters
that starts with a letter or underscore, followed by zero or more letters, numbers, underscores, or dollar signs.

Rule StringLiteral

rule StringLiteral ::=
'r#\[^ \]* \#'
;

The StringLiteral rule is used to define a string literal in a programming language. It matches a sequence of
characters surrounded by square brackets.

3.4 Smart Contracts

Ola contracts allow users to write complex business logic that will be deployed to Ola’s Layer2 network, and
cross-contract calls can be written between different contracts just like solidity.

3.4.1 Simple Examples

The following example shows a recursive and non-recursive Ola smart contract implementation of Fibonacci
numbers.

contract Fibonacci {
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fn main () {
fib_non_recursive (10);

}

fn fib_recursive (u32 n) -> (u32) {
if (n == 0) {

return 0;
}
if (n == 1) {

return 1;
}
return fib_recursive (n - 1) + fib_recursive (n - 2);

}

fn fib_non_recursive (u32 n) -> (u32) {
if (n == 0) {

return 0;
}
u32 first = 0;
u32 second = 1;
u32 third = 1;
for (u32 i = 2; i <= n; i++) {

third = first + second ;
first = second ;
second = third ;

}
return third ;

}

}

The following shows a simple Person contract that contains a person structure, assigns a value to the Person
structure, and reads the status of the person.

contract Person {
enum Sex {

Man ,
Women

}

struct Person {
Sex s;
u32 age;
u256 id;

}

Person p;

fn newPerson (Sex s, u32 age , u256 id) {
p = Person (s, age , id);

}
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fn getPersonId () -> (u256) {
return p.id;

}

fn getAge () -> (u32) {
return p.age;

}
}

3.4.2 Multiple files

For better project organization and clearer logic, it is common to split the contents of a file into multiple files. Ola
language supports the import of another contract within a contract through the import keyword.

An example of a multi-file contract is shown below.
Contract RectangularCalculator

contract RectangularCalculator {
fn rectangle (u32 w, u32 h) -> (u32 s, u32 p) {

s = w * h;
p = 2 * (w + h);
// Returns a variable with the same name , the return can be ignored
// return (s, p)

}
}

Contract ShapeCalculator

contract SquareCalculator {

fn square (u32 w) -> (u32 s, u32 p) {
s = w * w;
p = 4 * w;
return (s, p);

}
}

Contract Calculator

import "./ RectangularCalculator ";
import "./ SquareCalculator ";

contract Calculator {

fn sum(u32 w, u32 h) -> (u32 s, u32 p) {
(u32 rectangle_s , u32 rectangle_p ) = rectangle (w, h);
(u32 square_s , u32 square_p ) = square (w);
return ( rectangle_s + square_s , rectangle_p + square_p );

}
}
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4 Ola-Compiler: A LLVM IR Based Compiler to Generate RISC Assembly

4.1 Ola Compiler Introduction

The Ola Compiler compiles the high-level Ola contract code into the assembly code supported by OlaVM.
The general pipeline process is shown as Figure 61:

Figure 61: Ola-lang Language and Compiler Pipeline

As can be seen from the above figure, the frontend of the compiler takes the high-level contract program as input
and then compiles it into LLVM Intermediate Representation (IR); and the backend of the compiler takes the LLVM
IR generated by the frontend as input and then compiles it into Ola assembly code.

The assembly code is eventually assembled, linked, loaded, and executed by OlaVM through the toolchain pipeline
to generate a trace.

To illustrate the compiler pipeline, the following is an example of a typical u32 type sqrt operation with instructions
and Prophet two different versions to show the code generation process.

An example Ola-lang high-level language program for computing sqrt of type u32 with Prophet version is as
follows:

contract SqrtContract {
fn main () {

sqrt_test (4);
}
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fn sqrt_test (u32 n) -> (u32) {
u32 b = u32_sqrt (n);
return b;

}
}

An example ola-lang high-level language program for computing sqrt of type u32 with instructions version is as
follows:

contract SqrtContract {
fn main () {

sqrt_test (4);
}

fn sqrt_test (u32 a) -> (u32) {
u32 result = 0;
if (a > 3) {

result = a;
u32 x = a / 2 + 1;
// assume the maximum iteration is 100
for (u32 i = 0; i < 100; i++) {

if (x >= result ) break ;
result = x;
x = (a / x + x) / 2;

}
} else if (a != 0) {

result = 1;
}
return result ;

}
}

4.2 Ola Language Compiler Frontend

This section introduces the key components and functionalities of the Ola language compiler frontend. We will
discuss the process of lexical analysis, syntax parsing, Abstract Syntax Tree (AST) generation, semantic analysis, and
LLVM Intermediate Representation (IR) generation in detail.

The processing flow of the compiler frontend is shown in the following figure62:

4.2.1 Ola Language Parser

Lexical Analysis

Lexical analysis is the first stage of the compiler frontend. In this phase, the goal is to break down the source code
into a series of tokens. The Ola language lexer will handle the following elements:

• Keywords
• Identifiers
• Operators
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Figure 62: Ola-lang Compiler Frontend

• Literals (such as strings, numbers, and boolean values)
• Comments
• Delimiters (such as parentheses and commas)
Additionally, the lexer will eliminate whitespace and comments, ensuring a clean token stream for the next phase.

Syntax Parsing

Syntax parsing is the process of transforming the tokens generated in the lexical analysis phase into an Abstract
Syntax Tree (AST). The Ola language compiler will implement a top-down parser, such as a Recursive Descent Parser,
to support Ola language’s grammar.

This section will also discuss the implementation of error handling and recovery mechanisms, ensuring that the
parser can handle syntax errors gracefully and provide helpful error messages to the user.

Abstract Syntax Tree (AST) Generation

During the syntax parsing phase, the parser will generate an AST representing the program’s structure. This
section will explain the design of the AST data structures and the process of constructing the AST during parsing.
Additionally, it will cover the benefits of using an AST, such as enabling easier manipulation and analysis of the code’s
structure.

The Ola compiler seamlessly integrates the Lexical Analysis, Syntax Parsing, and Abstract Syntax Tree (AST)
generation processes, forming a cohesive and efficient pipeline. By leveraging the LALRPOP framework, these phases
work in harmony, transforming the Ola source code into an AST representation that is suitable for subsequent compiler
phases. This unified approach not only simplifies the implementation but also enhances the performance and robustness
of the Ola compiler.

By following these steps, the compiler can efficiently convert the Ola source code text into a sequence of tokens:
• The first step in implementing the lexical analysis phase of the Ola compiler is to define lexer rules for various

token categories, including keywords, identifiers, literals, and operators. These rules should be based on the
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provided EBNF grammar rules. We created a file named Ola.lalrpop that describes Ola’s EBNF grammar
rules.

• After defining the lexer rules, the next step is to integrate the lexer with the parser. This can be achieved by using
the lexer attribute in LALRPOP grammar rules. The lexer attribute specifies which lexer rule should be used
to recognize a particular grammar production.

• Ola compiler provides error handling and reporting. If the lexer encounters an unexpected character or a
malformed token, it generates an error with the corresponding position in the input text. This information can
be used to provide helpful error messages to the user.

Once the lexical analysis phase is complete, the generated sequence of tokens can be passed to the parser, which
will construct an abstract syntax tree (AST) based on the defined grammar rules. This AST can then be further
processed by subsequent phases of the Ola compiler, such as semantic analysis, optimization, and code generation,
ultimately producing executable code for the target platform.

By leveraging the powerful LALRPOP framework, the Ola compiler can efficiently perform lexical analysis and
provide robust error handling, ensuring that the compiler is user-friendly and capable of handling complex Ola source
code.

4.2.2 Semantic Analysis

The Semantic Analysis phase of the Ola compiler is an extensive process that ensures the program’s correctness
and consistency. As previously mentioned, this phase consists of several sub-tasks. Here, we delve deeper into each
sub-task, providing a more detailed and comprehensive explanation of the process.

Symbol Resolution

The compiler analyzes the program’s scope and context to resolve symbols accurately. It distinguishes between
local and global variables, function declarations, and type definitions. The symbol table, which holds information
about each symbol, is updated as the compiler traverses the AST. During this process, the compiler also checks for
naming conflicts and multiple declarations, ensuring that the program adheres to Ola’s scoping rules.

LibFunction Identification

In the semantic analysis phase, we will identify all libFunction names that users call. We will also construct
prototype code for these LibFunctions and verify whether the parameters used to call them match the parameter types
and numbers in the prototype code. If there is a match, we will record them for easy processing of IR generation for
Lib Functions in subsequent LLVM IR generation phases.

Type Checking

The compiler ensures that each operation and expression in the program involves operands of compatible types.
In this stage, the compiler also infers the types of expressions when necessary and enforces type constraints for function
calls, assignments, and arithmetic operations.
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Control Flow Analysis

In addition to checking for unreachable code and infinite loops, the control flow analysis process verifies that:
• All code paths in a function that should return a value must end with a return statement.
• Break and continue statements appear only within loops.
• Variables are declared before they are used.

Constant Expression Evaluation

During this step, the compiler performs the following tasks:
• Evaluates arithmetic and bitwise operations on constant expressions at compile-time, ensuring that the generated

code is more efficient.
• Detects potential errors, such as array index out-of-bounds, by evaluating expressions that involve constants.
• Folds constant expressions, such as mathematical operations or string concatenations, reducing the code size and

improving execution efficiency.

Semantic Validation

The final step of the semantic analysis phase consists of several validation checks, including:
• Verifying that variables are initialized before they are used.
• Ensuring that variables, functions, and types are declared only once within a given scope.
• Checking that all required function arguments are provided and that excess arguments are not supplied.
• Validating that return statements are used correctly within functions.
The Semantic Analysis phase is crucial for the robustness and correctness of the Ola compiler. By performing

these comprehensive checks, the compiler can guarantee that the generated code adheres to the language’s semantic
rules and is free from errors that might lead to unexpected behavior during execution. With a semantically verified
AST, the Ola compiler proceeds to the subsequent phases of the compilation process, ensuring the efficient translation
of the source code into executable code tailored for the OlaVM.

4.2.3 LLVM IR Generation

The LLVM IR Generation phase is a crucial step in the Ola compiler, as it translates the Abstract Syntax Tree
(AST) obtained from the semantic analysis into LLVM Intermediate Representation (IR). This phase leverages the
Inkwell framework, a powerful and user-friendly library that simplifies the process of generating LLVM IR code in
Rust.

Inkwell Initialization

Initialize the Inkwell context by creating a new Context object. Set up the target information by querying the
target machine properties, such as target triple, data layout, and target-specific optimization levels. This information
helps in generating the correct LLVM IR code tailored for the target architecture.

The pseudocode is shown below:
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// Create a new LLVM context
let context = Context :: create ();
let module = context . create_module (name);
let builder = context . create_builder ();

Lib IR Generation

Before generating LLVM IR for user-defined functions, the compiler will first generate LLVM IR for previously
called lib functions, prophet functions, and builtin functions. These functions have fixed logic that Ola contract
developers will not change.

The pseudocode is shown below:

declare_builtins (bin)
declare_prophets (bin)

for each lib function in ns. called_lib_functions :
if lib function == " u32_sqrt ":

define function u32_sqrt ( value : i64) -> i64:
root = prophet_u32_sqrt ( value )
builtin_range_check (root)
root_squared = root * root
builtin_assert ( root_squared , value )
return root

else if lib function == " u32_xxx ":
// do nothing

else:
// do nothing

AST Traversal

Traverse the AST using a depth-first approach. Focus on visiting function nodes, as they represent the main
building blocks of the Ola program. For each function node encountered, generate its corresponding LLVM IR.

The pseudocode is shown below:

fn traverse_ast (node: & AstNode ) {
if let AstNode :: Function (func) = node {

generate_function (& func);
}

for child in node. children () {
traverse_ast ( child );

}
}
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Function Generation

For each Ola function, create a corresponding LLVM function by invoking the add_function method on the
Inkwell module. Map the Ola function’s return type and argument types to their corresponding LLVM types using a
custom type mapping function. Add the function arguments with their respective types to the LLVM function using
the append_parameter method.

The pseudocode is shown below:

fn generate_function (func: & OlaFunction ) -> LLVMFunction {
// Map Ola function type to LLVM function type
let func_type = map_ola_type_to_llvm_type (& func. return_type );
let llvm_func = context . create_function (func.name , func_type );

// Add function arguments
for arg in &func. arguments {

let llvm_arg_type = map_ola_type_to_llvm_type (& arg.type);
llvm_func . add_argument ( llvm_arg_type , arg.name);

}

// Create a builder and position it at the entry block
let builder = context . create_builder ();
builder . position_at_end (& llvm_func . entry );

// Process each statement in the function body
for stmt in &func.body {

process_statement (stmt , & builder );
}

// Return the generated LLVM function
llvm_func

}

Statement Processing

Based on the type of statement encountered in the function body, generate the appropriate LLVM IR instructions.
For expression statements, process the expression and generate the corresponding LLVM IR code. For variable
declaration statements, allocate memory for the variable on the stack using the build_alloca method, and store its
initial value using the build_store method. For control flow constructs, such as loops and conditionals, generate
appropriate branching instructions using methods like build_conditional_branch and build_loop.

The pseudocode is shown below:

fn process_statement (stmt: &Statement , builder : & Builder ) {
match stmt {

Statement :: Expression (expr) => process_expression (expr , builder ),
Statement :: VariableDeclaration ( var_decl ) => process_variable_declaration (

var_decl , builder ),
// ... other statement types

}
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}

Expression Processing

Process each expression encountered in the function body and generate the corresponding LLVM IR instructions.
This includes handling arithmetic operations, logical operations, and control flow constructs (such as if-else expres-
sions). For each type of expression, call the appropriate function to generate the LLVM IR code. For example, for binary
expressions, generate the appropriate arithmetic or logical operation using methods like build_add, build_mul, or
build_and. For function calls, generate the call instruction using the build_call method.

The pseudocode is shown below:

fn process_expression (expr: & Expression , builder : & Builder ) -> LLVMValue {
match expr {

Expression :: BinaryExpression (op , lhs , rhs) => generate_binary_expression (op ,
lhs , rhs , builder ),

Expression :: IfExpression (cond , then_expr , else_expr ) =>
generate_if_expression (cond , then_expr , else_expr , builder ),

// ... other expressions
}

}

Type Mapping

Type Mapping is a crucial function that needs to be implemented in order to convert Ola types into their
corresponding LLVM types. This mapping function should handle all Ola types, including basic (such as u32, u64,
and u256) and complex types (such as structs and arrays). It’s important to note that the Ola language is based on
the Field type at its core, with various integer types built upon it. The Field Order is 0xFFFFFFFF00000001. To
fully represent a field element, we create an integer type using the method context.i64_type(). For complex types
such as structs and arrays, custom LLVM types can be created using methods like context.struct_type() and
context.array_type().

The pseudocode is shown below:

fn map_ola_type_to_llvm_type ( ola_type : & OlaType ) -> LLVMType {
match ola_type {

OlaType :: Field => context . i64_type () ,
OlaType :: U32 => context . i32_type () ,
OlaType :: U64 => context . i64_type () ,
OlaType :: U256 => context . array_type ( context . i64_type () , 4) ,
OlaType :: Struct (name) => context . struct_type (& structs [name ]. fields , false ),
OlaType :: Array (elem_type , size) => context . array_type (

map_ola_type_to_llvm_type ( elem_type ), *size),
// ... other types

}
}
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4.3 Ola Compiler Backend: from LLVM IR to OlaVM assembly

Ola compiler backend bridge IR structure of module, function and Instruction Set Architecture(ISA) related
callconv, registers and instructions. Its main features are code generation related lower and optimization related passes.

Target ISA mainly contains custom target instructions, registers which contain register class and register informa-
tion, call convention and datalayout information.

Module in addition to inheritance IR is parsed out as Module structure, the description of its function and differ
significantly with LLVM IR. Data information of Basic Block (BB) in the instructions target for the instruction, the
register contains VRegs (Virtual Registers) and RegUnit (Register Unit) two categories, and contains a VRegs to
Instructions (Insts) mapping. At the same time, instruction in data layout is referred to target instruction. Note that
the structure of slot which contains stack base pointer and stack offset describe the memory access operations of
parameters, local variables.

The lower provides the process of downgrading IR instruction to target instruction. Specifically it also requires
copy parameters to VRegs for function call.

The pass module contains the register allocation (RegAlloc, RA) and spiller for analyzing the liveness of the pass
and the function pass.

4.3.1 Backend Introduction

The backend of the Ola compiler compiles IR into target assembly code. It takes the standard LLVM IR generated
by the frontend as input and the Ola assembly code as output.

Its pipeline process is as follows figure 63:
An example ola-lang assembly code for computing sqrt of type u32 with prophet version is as follows:

{
" program ": " u32_sqrt :\n. LBL3_0 :\n mov r3 r1\n mov r1 r3\n. PROPHET3_0 :\n mov r0

psp\n mload r0 [r0 ,0]\n range r0\n mul r2 r0 r0\n assert r2 r3\n ret\
nmain :\n. LBL4_0 :\n add r8 r8 4\n mstore [r8 , -2] r8\n mov r1 4\n call
sqrt_test \n add r8 r8 -4\n end\ nsqrt_test :\n. LBL5_0 :\n add r8 r8 6\n
mstore [r8 , -2] r8\n mov r0 r1\n mstore [r8 , -3] r0\n mload r1 [r8 , -3]\n
call u32_sqrt \n mstore [r8 , -4] r0\n mload r0 [r8 , -4]\n add r8 r8 -6\n ret\
n",

" prophets ": [
{

" label ": ". PROPHET3_0 ",
"code ": "%{\n entry () {\n cid.y = sqrt(cid.x);\n }\n%}" ,
" inputs ": [

"cid.x"
],
" outputs ": [

"cid.y"
]

}
]

}
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Figure 63: Ola-lang Backend Pipeline
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The backend data structure contains mainly lists, module instructions, and target instructions. The Application
Binary Interface(ABI) then contains Function call specification and mapping relationships to virtual memory.

The backend codegen pipeline process is briefly as follows:
• IR parsing
• Function call lowering
• Instruction selection
• Register allocation
• Slot elimination
• Stack frame handling
• Assembly printing

4.3.2 Parser: Parse LLVM IR to Module Instruction

• IR Module
IR is composed of the following multi level structures:

module -> function -> value -> types

(1) Module structure contains Target which contains triple and datalayout information, Function, Attribute and
GlobalVariable.
(2) Function structure contains Name, Type information, Visibility, Attribute and Parameter list basic information
and DataLayout.
(3) Datalayout contains the sequential logical relationship between BasicBlock and the Instruction within them.
(4) Data contains the specific Value, Instruction, BasicBlock list instances.
(5) BasicBlock is identified by BasicBlockId and consists of two parts: name and number. Each BB usually
contains one predecessor and one successor except for the entrance BB, which just only has one successor but
not predecessor.
(6) Instruction is identified by BasicBlockId, InstructionId and usually consists of opcode, source operands, dest
operand and type of its operation.
(7) Value contains Instruction, Argument, Constant and Inline Assembly types.
(8) Due to the characteristics of the instruction set of OlaVM, The types currently supported by the compiler are
mainly i64 and the occasional i1.

• IR Parser
The role of IR parser is to parse LLVM IR to Module Instruction. Its parsing briefly process is as follows:
(1) Parser parse target DataLayout and Triple, the result is target data information.
(2) Parser parse attribute group, the result is attribute information of module.
(3) Parser parse local types in module, the result is registered type in module.
(4) Parser parse global variables, the result is global variables symbol table.
(5) Parser parse function which is mainly divided into arguments list and function body, the result is function
structure in module instruction.
(6) Parser parse metadata, the result is metadata map in module.
Its pipeline process is as Figure 64:
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Figure 64: Ola-lang Backend Parser Pipeline

82



4.3.3 Optimizer: Optimization Passes on Parsed IR

Usually there are two kinds of compiler Optimization (Opt) passes, one is analysis passes and the other is transform
passes. Currently our analysis pass is mainly Dominator Tree analysis pass, while transform passes contains Dead Code
Elimination (DCE), Promote Memory to Register (Mem2Reg), Sparse Conditional Constant Propagation (SCCP).

Its pipeline process is as Figure 65:

Figure 65: Ola-lang Backend IR Optimization

4.3.4 ISA Description: Register and Instruction

The register description is as follows:

Type Description Register Group

general registers General used by program [r0-r8]

return register Return value for return to caller [r0]

parameters rigsters Parameters value for passing arguments [r1, r2, r3]

temporary registers Temporary alloc for local variables [r4, r5, r6, r7]

stack pointer Function’s stack pointer [r8]

special registers Interact with vm: pc for program counter and psp for prophet pointer [pc, psp]

Table 24: Register Description

Instruction description contains opcode and operands, note that the opcode here contains both register and
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immediate number types in addition to the usual operator.
Opcode with register or immediate number is as follows:

ADDri ,
ADDrr ,
MULri ,
MULrr ,

EQri ,
EQrr ,
ASSERTri ,
ASSERTrr ,

MOVri ,
MOVrr ,

JMPi ,
JMPr ,
CJMPi ,
CJMPr ,
CALL ,
RET ,
END ,

MLOADi ,
MLOADr ,
MSTOREi ,
MSTOREr ,

RANGECHECK ,
AND ,
OR ,
XOR ,
NOT ,
NEQ ,
GTE ,

PROPHET ,

Phi ,

In particular, it is important to note that Operand data types are very different from the standard LLVM IR such
as two register types, memory slot, block and label.

Operand data type in instructions selection is as follows:

Reg(Reg),
VReg(VReg),
Int8(i8),
Int32 (i32),
Int64 (i64),
MemStart ,
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Slot( SlotId ),
Block ( BasicBlockId ),
Label ( String ),
GlobalAddress ( String ),
None ,

4.3.5 ABI Lower: Lowering Function Call

Ola Procedure Call Standard (OPCS) are as follows:
The stack initialization points to the first address of the frame stack after the fp register is loaded.
The address will be increased when the call instruction is executed later. When the ret instruction is executed,

the fp register points to the address and falls back.
The Calling process is as follows:

• call label
Caller use call instruction to call a callee as call functionLabel, and fp points to the new frame.
The pc address returned by the callee is placed in fp-1 which is detected by VM but not visible by the compiler
backend.
Its instructions pattern are as follows:

main:
. LBL0_0 :

...
call foo
...

foo:
. LBL1_0 :

...

• function address
The address pointed to by fp before the function call is placed in fp-2 as mstore [r8,-2] r8.
Its instructions pattern are as follows:

mstore [r8 , -2] r8

• passing arguments
Function parameter processing: the first three input parameters are placed in the three registers r1, r2, and r3. If
there are more than 3 parameters, start with the fourth input parameter and descend accordingly in fp-3, fp-4,
....
Its instructions pattern are as follows:

mov r1 vreg1
mload r2 [r8 , offset ]
mov r3 vreg2

• local variables
Local variables inside the function start at old fp, and their addresses are stored incrementally.
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The single return value is stored in r0. If there are multi return values, it needs to be returned by a memory
pointer that return the package data.
Instruction pattern for single return value is as follows:

mov r0 vreg3

The call stack frames layout is as follows 66:
For prophet library functions, its instructions pattern as:

. PROPHET { funcNum }_{ prophetNum }: // bind to prophet label
mov r0 psp // interact with prophet read -only memory , get return value from prophet

pointer
mload r0 [r0 ,0] // used returned r0 as indexed addressing

First .PROPHET label binds to the prophet instance in assembly output. Then the program interacts with prophet
read-only memory, get the return value from prophet pointer [psp] and write the result into r0. At last, we use r0 as
indexed addressing to load return values from prophet memory.

4.3.6 Instruction Selection: Match Pattern from IR to Target Instruction

It finds opcode and operands of instruction according to the given pattern, then select the best target single or
multi instructions to match with it.

Several common patterns briefly are as follows table:

Pattern Type Description

Alloca params and vars allocation, selected to memmory operations

IntBinary bianary operator

Load memory load, containing base or offset

Store memory store, containing base or offset

Call A (caller) call B (callee)

Return B (callee) return to A (caller)

Branch branch control flow, selected to jump operations

Conditional Branch conditional branch control flow, selected to compare and jump operations

Table 25: Instruction Selection Pattern

Let’s take the Conditional Branch more specifically, for example, it’s target instructions are as follows table 26:

4.3.7 Slot Elimination

This pass handles the stack slot for local variables.
Its pipeline is as follows:

VistModule
| VisitFunction layout

| VisitBasicBlock
| Match inst 's data operand is Slot type

| workList : push inst
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Figure 66: Ola-lang Function Call Stack Frames
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Operator Reg and Imm Reg and Reg Cycles

==

mov tmpReg imm

eq tmpReg regA tmpReg

cjmp tmpReg labelTrue

eq tmpReg regA regB

cjmp tmpReg labelTrue

3inst + 2reg

2inst + 3reg

<

mov tmpReg1 imm

gte tmpReg1 tmpReg1 regA

neq tmpReg2 tmpReg1 regA

and tmpReg2 tmpReg2 tmpReg1

cjmp tmpReg2 labelTrue

gte tmpReg1 regB regA

neq tmpReg2 regA regB

and tmpReg2 tmpReg1 tmpReg2

cjmp tmpReg2 labelTrue

5inst + 3reg

4inst + 4reg

<=

mov tmpReg imm

gte tmpReg tmpReg regA

cjmp tmpReg labelTrue

gte tmpReg regA regB

cjmp tmpReg labelTrue

3inst + 2reg

2inst + 3reg

>

mov tmpReg1 imm

gte tmpReg1 regA tmpReg1

neq tmpReg2 tmpReg1 regA

and tmpReg2 tmpReg2 tmpReg1

cjmp tmpReg2 labelTrue

gte tmpReg1 regA regB

neq tmpReg2 regA regB

and tmpReg2 tmpReg1 tmpReg2

cjmp tmpReg2 labelTrue

5inst + 3reg

4inst + 4reg

>=

mov tmpReg imm

gte tmpReg regA tmpReg

cjmp tmpReg labelTrue

gte tmpReg regA regB

cjmp tmpReg labelTrue

3inst + 2reg

2inst + 3reg

!=

mov tmpReg imm

neq tmpReg regA tmpReg

cjmp tmpReg labelTrue

neq tmpReg regA regB

cjmp tmpReg labelTrue

3inst + 2reg

2inst + 3reg

Table 26: Conditional Branch Selection Pattern

| Computer slot offset
| foreach workList

| fixup inst 's operand with offset and size

4.3.8 Target Instruction Insertion: Prologue and Epilogue

When the processing is completed after the parameters of the function and the function body, as a part of the
function it needs to do the corresponding stack space processing at the entrance and exit, respectively. That is, first
calculate the stack size, then the stack is opened at the entrance, and the stack is recycled at the exit.

When there is no function call in the function body, entrance is one add instruction such as:

InstructionData {
opcode : Opcode :: ADDri ,
operands : vec![

Operand :: input_output (GR :: R8.into ()),
Operand :: input_output (GR :: R8.into ()),
Operand :: input (adj.into ()),

],
}
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When there is one or multi function call in the function body, entrance is one add inst and one mstore instruction
such as:

InstructionData {
opcode : Opcode :: ADDri ,
operands : vec![

Operand :: input_output (GR :: R8.into ()),
Operand :: input_output (GR :: R8.into ()),
Operand :: input (adj.into ()),

],
}

InstructionData {
opcode : Opcode :: MSTOREr ,
operands : vec![

Operand :: output (GR :: R8.into ()),
Operand :: input (GR :: R8.into ()),

],
}

While the exit is one sub operator which is expressed as add instruction such as:

InstructionData {
opcode : Opcode :: ADDri ,
operands : vec![

Operand :: output (GR :: R8.into ()),
Operand :: input_output (GR :: R8.into ()),
Operand :: input ((- adj).into ()),

],
}

4.3.9 Register Allocation and Coalescing

Register allocation use linear scan method, its briefly steps as follows:
(1) we analyze liveness in function, for input and output find live in and live out.
(2) we insert spill and reload code, push it to worklist.
(3) we rewrite the virtual register for the target register.
While the steps for register coalescing is as follows:
(1) We traverse the movrr target instructions at basic block of function on the module.
(2) If the two registers of operands are the same, then we push the instructions into the work list.
(3) We can then remove the instructions in the work list from the function.

4.3.10 Assembly Printing

Program basic format
The basic format of the Ola assembly language is as follows:

{ symbol } { instruction | directive | pseudo - instruction } {; | // comment }
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• Symbol indicates a symbol, which must start at the beginning of the line.
• Instruction indicates an instruction, it is usually preceded by two spaces.
• Directive indicates a pseudo operation.
• Pseudo instruction means a pseudo instruction.
• Directives, pseudo operations, and pseudo instruction helpers are all case-sensitive, but cannot be mixed.
Assembly instructions
For simplicity, pseudo operations and pseudo instructions like .global is not considered for now. Function

entries that start with funcName and end with : are treated as label. For example, main: defines a label for a function
named main.

Note: The symbols that usually start with . symbols that begin with . indicate pseudo directives or pseudo
operations, such as different segments. Symbols ending with : indicate labels, such as function names and basic block
numbers.

Instruction Format
The format of the internal assembly instruction is in the form of a three-address code:

<opcode > <Rd > <Rn > <shifter_operand >

• Opcode indicates the instruction helper, usually the instruction helper defined by OlaVM.
• Rd indicates the instruction operation destination register, which is usually the register defined by OlaVM.
• Rn indicates the first source operand of the instruction, usually a register defined by OlaVM.
• shifter_operand indicates the instruction data processing operand, usually an immediate or register defined

by OlaVM.
Memory layout
After the program is loaded, pc points to the zero address and the function stack frame is switched according

to the hierarchy of function calls, and the memory address stack grows from a low address to high address. When
prophets are present in program, an indexed addressing register is required to interact with the prophet memory.

4.4 Library Functions

4.4.1 Ola-lang Library Goal

• efficiency
The goal of the Ola-lang high-level language library is to provide a set of high-level APIs that can be used to
quickly develop applications. The library provides commonly used functions and modules, such as Ola Standard
Library, integer type operations, math calculations, which can greatly improve the development efficiency of
programmers.
In addition, the library also will provide third-party modules that can be used to extend the functionality of the
library.

• integer types functions
Another goal is that since the native type of the ola language is the field type, operators of other types such as
u32 and other integer types need to be simulated and converted through field-type operations to Implement their
functions.
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4.4.2 Language Features

For functionality, efficiency, and performance, our library functions usually combine Program, Builtin, and
Prophet these three language features in their implementation.

The ola language uses standard syntax such as operations and control flow to describe the algorithmic process of
library functions.

Ir generates the standard llvm ir, and also generates some builtin and prophet functions; these two types of
functions generate calls and declarations but do not generate function bodies for function definitions.

The assembly code generates the standard olavm instructions; the builtin functions are converted to standard
instructions such as rangecheck assert; the prophet functions to generate a label in the body of the program, while the
function body, input, and output information are expanded to facilitate interpretation and execution in the VM.

• Program
The ola language describes the algorithmic process, Ir generates llvm ir containing builtin and prophet libFunc-
tions, and The assembly code generates the standard olavm instructions and prophets.

• Builtin
The ola language is non-sensitive, Ir generates builtin libFunctions such as rangecheck and assert.

• Prophet
The ola language is non-sensitive, Ir generates prophet libFunctions such as sqrt, div, and mod, and verifies the
result. The assembly code generates prophet APIs for the VM such as function body, inputs, and outputs. and
load psp to get the result.

Example of Assembly Pseudocode for a Typical Library Functions

Its pseudo-code format is as follows:

{
" program ": " // be directly executed by vm

funcName :
.LBL{ funcNum }_{ bbNum }:

insts // such as mov add mload mstore call general instructions
. PROPHET { funcNum }_{ prophetNum }: // bind to prophet label
mov r0 psp // interact with prophet read -only memory , get return value from

prophet pointer
mload r0 [r0 ,0] // used returned r0 as indexed addressing
rangecheck // rangecheck builtin inst
insts
assert // assert builtin inst
insts
return ",

" prophets ": [ // be indirectly executed by the embedded interpreter in vm
{

" label ": ". PROPHET { funcNum }_{ prophetNum }", // according with prophet label in
program

"code ": "%{\n entry () {\n cid.y = prophet_function_name (cid.x);\n
}\n%}" , // prophet body , like solidity syntax

" inputs ": [ // prophet params
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"cid.x"
],
" outputs ": [ // prophet return values

"cid.y"
]

}
]

}

The comments in json asm describe the program, builtin, and prophet and their interaction in compiler output olavm
assembly code.

• Program
The program will be directly executed by VM after assembler encoding. It contains mainly instructions,
rangecheck and assert builtin instructions, and call prophet displayed as prophet label format. It interacts with
prophet read-only memory and gets a return value from the prophet pointer. Then use the return value register
as indexed addressing to go on next program logic.

• Prophets
The other part as the prophets list will be indirectly executed by an embedded interpreter in VM. The API field
contains labels according to the prophet label in the program, prophet body which code is like solidity syntax,
input as prophet params and outputs as prophet return values indirectly passed to the program.

4.4.3 U32 Library Functions List

Take u32 integer type libFunctions for example, its implementation in the language, the frontend and backend of
the compiler is roughly as follows table 27:

5 ZK-ZKVM

A ZKVM (Section 2.2) which is a system that uses ZK technology to implement a verifiable circuit system for
general computation. However, it has some issues where privacy is required, for example, quotation data of commercial
competition, anonymous auction, etc. The generation of each program’s proof executed in the ZKVM leaks the witness
data, such as the name and function of the called contract, parameters, and so on.

To address this privacy concern, the ZK-ZKVM system has been developed. This system builds on top of ZKVM
but adds an extra layer of privacy by ensuring that all witness data is private and does not reveal any information.
This is achieved through the use of a key system consists of different permissioned private keys and a note mechanism
similar to ZCash’s UTXO model.

The basic principle of ZK-ZKVM is the use of different permissioned private keys in the key system. These keys
are used to encrypt and decrypt the witness data, ensuring that it remains private and secure. Additionally, the note
mechanism is used to further enhance the privacy of the system. Each note represents a certain amount of value that
is spendable by the recipient, and is transmitted in ciphertext. It is impossible to deduce any information about the
transaction from this ciphertext.

The importance of ZK-ZKVM lies in its ability to address the privacy concerns that exist in ZKVM. With ZK-
ZKVM, users can conduct transactions on public blockchains with the assurance that their sensitive information is
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Functions Notes Ola-lang IR Logic Assembly Logic

u32_add
add

rangecheck
a+b

add opcode

rangecheck builtin

add instruction

rangecheck builtin instruction

u32_sub
sub

rangecheck
a-b

sub opcode

rangecheck builtin

add instruction

rangecheck builtin instruction

u32_mul
mul

rangecheck
a*b

mul opcode

rangecheck builtin

mul instruction

rangecheck builtin instruction

u32_div
rangecheck

div prophet

assert

a/b
q=prophet_div(a, b)

assert builtin

instructions: passing params a,b

code: prophet_div, prophet_mod

instructions: get q from psp register

assert instruction

u32_mod
rangecheck

mod prophet

assert

a%b
r=prophet_mod(a, b)

assert builtin

instructions: passing params a,b

code: prophet_div, prophet_mod

instructions: get r from psp register

assert instruction

u32_increment
add

rangecheck
a++

add opcode

rangecheck builtin

add instruction

rangecheck builtin instruction

u32_decrement
sub

rangecheck
a–

sub opcode

rangecheck builtin

add instruction

rangecheck builtin instruction

u32_or conditional branch with or a||b separate to two brcond opcodes cmp, cjmp and jmp instructions

u32_and conditional branch with and a&&b separate to two brcond opcodes cmp, cjmp and jmp instructions

u32_bitwise_or bitwise or a|b or opcode or builtin instruction

u32_bitwise_and bitwise and a&b and opcode and builtin instruction

u32_bitwise_xor bitwise xor aˆb xor opcode xor builtin instruction

u32_equal eq compare a==b icmp eq opcode eq instruction

u32_not_equal ne compare a!=b icmp ne opcode neq builtin instruction

u32_more ugt compare a>b icmp ugt opcode gte and neq builtin instructions

u32_more_equal uge compare a>=b icmp uge opcode gte builtin instructions

u32_less ult compare a<b icmp ult opcode gte and neq builtin instructions

u32_less_equal ule compare a<=b icmp ule opcode gte builtin instruction

u32_shift_left
i=2b̂ which call u32_power

a=a*i
a«b

loop unroll related opcodes and mul opcode

rangecheck builtin

jmp, cjmp and mul related opcodes

rangecheck builtin instruction

u32_shift_right
i=2b̂ which call u32_power

a=a/i which use div prophet
a»b

loop unroll related opcodes

rangecheck builtin

div prophet

jmp and cjmp related opcodes

rangecheck builtin instruction

div prophet

assert instruction

u32_not eq compare to zero a icmp eq opcode with the last operand is zero eq instruction with the last operand is zero

u32_complement u32_max sub a -a sub opcode with the first operand is u32_max
add instruction with the first operand is u32_max

rangecheck builtin instruction

u32_power
forloop pattern

rangecheck
a**b

loop unroll related opcodes

rangecheck builtin

jmp and cjmp related opcodes

rangecheck builtin instruction

u32_sqrt
rangecheck

sqrt prophet

assert

b=u32_sqrt(a)
rangecheck builtin

sqrt prophet

assert builtin

rangecheck builtin instruction

sqrt prophet

assert instruction

Table 27: U32 Library Functions List
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secure and private. This makes it suitable for a wide range of use cases that require high levels of privacy, such as
financial transactions or data sharing.

Furthermore, ZK-ZKVM also offers the same scalability benefits as ZKVM. By allowing for off-chain computation
and verification, it reduces the burden on the main blockchain and increases transaction throughput. This makes it a
more efficient and effective solution for blockchain scaling than traditional solutions.

In Section 5.1, we provide an in-depth explanation of the key system design in our ZK-ZKVM system. In the
following section, Section 5.2, we explore the note design within our ZK-ZKVM system. Moving on, in Sections 5.3
and 5.4, we conduct a comparative analysis of two distinct approaches to proof generation. Finally, in Section 5.5, we
present the fundamental framework of ZK-ZKVM.

5.1 Keys and Addresses

Encryption schemes and signature schemes in cryptography are the basis for achieving privacy. Encryption
schemes include symmetric encryption and asymmetric encryption. In symmetric encryption, the sender and recipient
first agree with a secret between them using key agreement scheme, and then derive a symmetric key from the secret
for encryption and decryption. In asymmetric encryption, the sender encrypts the plaintext with the recipient’s public
key, and then the recipient decrypts the ciphertext with his own private key. The signature scheme is just the opposite,
the sender signs plaintext with his own private key, and others can use the sender’s public key to verify the signature.

A variety of encryption and signature schemes are used in Ola to protect privacy. At the same time, in order to
enable the separation of spending and viewing permissions, some new keys are derived based on the elliptic curve
algorithm, which constitutes Ola’s key system.

Figure 67: Key system of Ola

5.1.1 Spending Key

The spending key is the most important key in the key system. Similar to the private key in Bitcoin, whoever
owns the spending key can spend and view the balance and transaction history in the address associated with this key.
The spending key is essentially a 256-bit random number, which makes it as secure as Bitcoin in some respects, and is
used to derive other keys.

5.1.2 Account Private Key

The account private key is derived from the associated spending key, and is also a private key like the spending
key and can not be leaked to others. An account private key can be used to sign transactions and generate note
commitments. It mainly consists of three parts:

• Random commitment key
– A random number used in commitment scheme.

• Signature secret key
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– A key used in signature scheme.
• Random seed

– A random number seed
– The signature secret key and the random commitment key are all derived from the random seed.

The random commitment key is a scalar used in commitment schemes. The signature secret key is also a scalar
used for the private key in signature schemes. The random seed is a random number generated by a random number
generator, which is an element in a finite field and is 32 bytes in size.

5.1.3 Account Public Key

The account public key is derived from the associated account private key, which mainly consists of:
• Signature public key
• Signature public random key
• PRF secret key
The signature public key is a public key derived from a signature secret key and a group generator on an elliptic

curve. It is essentially also a group element on the elliptic curve, and is used to verify the signature in a signature
scheme.

Sig_Pub_Key = GSig_Pri_Key

The signature public random key is a random number derived from random commitment key for a signature
scheme, and is essentially an element of the group defined on the elliptic curve.

Sig_Pub_Rand = Grcm

The PRF secret key is a key used in the Pseudo Random Function to generate pseudo-random numbers.

PRFsk(x) = Hash(sk || x)

5.1.4 Viewing Key

The viewing key is derived from the associated account private key, and each viewing key can generate one or
more addresses. A viewing key can decrypt all transaction records associated with its address, that is, arbitrarily read
transaction data under the address, so they can be used by regulatory departments to audit the historical transactions
of an account. It can also be handed over to an delegate to generate zero-knowledge proofs. After the viewing key is
leaked, all transaction data will be traced, but no assets will be lost (only the account private key can spend the user’s
assets). Viewing keys can only be issued to trusted institutions.

The viewing key is derived directly from the user’s account private key

viewing_key = private_key.sk + private_key.rcm + public_key.sk_prf

The main reason for creating a viewing key is to separate spending permissions and viewing permissions for user
addresses. Users can share the viewing key with others to help themselves when necessary (such as asking delegates
to generate zero-knowledge proofs for themselves), while keeping the spend key private.
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5.1.5 Address

An address is generated by the associated account public key or viewing key to receive transfers. Addresses in Ola
are either transparent or shielded (private). Transparent addresses are publicly visible on the blockchain, in the same
way that Bitcoin addresses are viewable. Shielded addresses are invisible and transactions between shielded addresses
do not reveal either address, the transaction value or the content of the encrypted field.

Zcash has defined a mechanism for generating hierarchical deterministic wallets in ZIP 32 [47], just like BIP 32
[9]. It can help users who want to generate multiple addresses per account. All derivations produce an opaque binary
spending key, from which the keys and addresses are then derived.

• ZIP 32
– Account 0

∗ Diversified address 0
∗ Diversified address 1
∗ ...

– Account 1
∗ Diversified address 0
∗ Diversified address 1
∗ ...

– ...
Ola will also design a similar mechanism in the future to implement a lightweight diversified address derivation

scheme, which provides different payment addresses to different senders when users receive money to better protect
the privacy of users.

5.2 Notes

5.2.1 Introduction

There are mainly two storage models in blockchain: the UTXO model used by Bitcoin and the account model
use by Ethereum. UTXO is the abbreviation of Unspent Transaction Outputs, it mainly focuses on the equality of
input and output. Transferring or updating contract status in the UTXO model performs consuming old notes and
producing new notes. The account model, on the contrary, focuses on data such as the balance of the account stored in
a location associated with the account. Transferring or updating the contract state can directly modify the data in the
same location. Ola uses the UTXO model to implement a private account system, and also supports the account model
to implement a public accounts system.

The main reasons why the private account system is implemented using the UTXO model rather than directly
based on the account model are:

1. The account model updates directly update the state in the location of the account, which makes it easy to leak
user identity information.

2. The account model supports privacy requires updating states of all users and contracts at the same time, which
is less efficient.

The UTXO model can address the above two problems and enables efficient implementation of privacy features.
In the private account system, a user’s balance information and state data are stored in a data structure called Note

96



(refer to Zcash). A note mainly contains:
• Account public key

– The public key of the owner of the note, that is, the holder of the private key corresponding to this public
key can consume this note.

• Amount
– The amount of tokens in the note, that is, the value that this note can spend.

• Payload
– Data stored in this note.

• Birth predicate
– Conditions that need to be met to create this note.

• Death predicate
– Conditions that need to be met to consume this note.

• Random commitment key
– Used to generate note commitment corresponding to this note.

• Nullifier key
– Used to generate nullifier corresponding to this note.

The above note is represented by the vector group, which can be expressed as: (spend public key, amount, payload,
birth, death, random commitment key, nullifier key).

5.2.2 Note Commitments and Nullifiers

When each note is created, a corresponding note commitment is generated, and the note commitment promises
the validity of all parameters in the note.

note_commitment = Commit(note)

Note commitments and notes have a one-to-one bĳection relationship, that is, there are no two different notes
with the same note commitment, and vice versa. Unlike the account model, there is not a Merkle tree on the chain to
store all states, but the ciphertext of notes is scattered among transactions in all blocks, and sequencers only maintain
a notes commitment tree. When creating a note, users need to prove that the note commitment of this new note is on
the current merkle tree through a zero-knowledge proof.

Every note has a nullifier, generated by the nullifier key and note commitment. In addition to the note commitment
tree, sequencers also maintain a nullifier set. When a note is spent, the nullifier of the note needs to be revealed publicly.
The node needs to check that the nullifier is not added to the nullifier set, otherwise it will cause the double spending
problem.

nullifier = Hash(nullifier_key || note_commitment)

5.2.3 Sending notes

In order to protect user privacy, the notes in the ledger can not be updated once they are generated. Instead, old
notes need to be marked as spent by revealing their nullifiers, and produce new notes and append them to the ledger.
After the user selects old notes and produces new notes, they need to encapsulate the note ciphertexts into a transaction
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and submit it to a sequencer. There are some other fields in the transaction, such as an aggregated zero-knowledge
proof. The process of sending notes is as follows:

1. Select the notes to be spent and the recipient’s shielded address.
2. Decrypt the note ciphertexts to get note plaintexts of the selected old notes.
3. Get the random commitment keys and the nullifier keys of old notes from their plaintexts.
4. Generate note commitments of old notes using the random commitment keys.
5. Generate proofs of the existence of old notes on the merkle tree.
6. Generate nullifiers of old notes through their nullifier keys.
7. Generate an ephemeral key pair, which consists of an ephemeral private key and an ephemeral public key.
8. Use the spending public key and the ephemeral private key as inputs of the key agreement scheme to generate a

shared secret.
9. Derive a symmetric key sym_key from the shared secret.

10. Construct new note plaintexts

np = (spending_public_key, value, payload, random_commitment_key, nullifier_key)

11. Encrypt note plaintexts using sym_key to get note ciphertexts.
12. Generate a statement depending on primary and auxiliary inputs.
13. Generate a zero-knowledge proof of the statement.
14. Assemble all old notes, new notes, the ephemeral public key and the proof into a transaction.
15. Encode the transaction and send it to the network.

5.2.4 Receiving notes

Recipients need to scan all blocks to receive notes sent to them. In each block, iterate over each transaction in it,
and try to decrypt all note ciphertexts. If a note ciphertext can be decrypted by the recipient’s viewing key, this means
the note is sent to the recipient, and the recipient can then view the value and payload in the note and add it to his spent
set. The process of scanning the blockchain is as follows:

1. Enumerate every transaction in the block.
2. Get the ephemeral public key in the transaction.
3. Use the spending private key and the ephemeral public key as inputs to the key agreement scheme to get a shared

secret.
4. Derive a symmetric key sym_key from the shared secret.
5. Use sym_key to decrypt a note ciphertext in the transaction.
6. If decryption gets note plaintext np:

np = (spending_public_key, textvalue, payload, random_commitment_key, nullifier_key)

(a) Generate the nullifier using nullifier_key and random commitment key.
(b) Generate the note commitment using the random commitment key.
(c) Check if the nullifier is already in the nullifier set to prevent double spending.
(d) Check if the note commitment is in the note commitment tree.
(e) Add the valid note to a spent set.

7. If it cannot be decrypted, try the next note ciphertext.
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8. Return the spent set.
The user’s balance and all on-chain state is the sum of the notes in the spent set.

5.3 Proof Generation

Sections 5.1 and 5.2 serve as core building blocks of our ZK-ZKVM system. In this section, we will explain our
proof generation scheme. For a high-level overview of the system design, please refer to Section 5.5.

Proof generation is a critical component of the ZK-ZKVM platform, designed to facilitate private and efficient
execution of smart contracts on the blockchain. The platform offers both public and private functions, with private
functions executed and proven on the user-side, while public functions are executed and verified on blockchain nodes.

To enable this functionality, ZK-ZKVM relies on advanced cryptographic techniques such as the key system
discussed in Section 5.1 and note design discussed in Section 5.2. These tools allow users to generate compact
and efficient proofs that demonstrate their authorization to execute private functions without revealing any sensitive
information about those functions.

The proof generation process involves several steps. First, in a single contract function call, there may be private
and public functions. The user executes and generates a set of data (including private and public inputs) for the private
function, along with a callback hook for the public function. They then use this data to generate a zero-knowledge
proof that demonstrates their authorization to execute the function and validates the execution.

Next, the user submits this proof, along with their public inputs, to the blockchain node for verification. The node
verifies the proof using ZK-ZKVM’s public parameters (referred to as the verification key in ZK-SNARKs) to ensure
that the private function is executed correctly.

Once the proof is verified, the network executes any relevant public functions on behalf of the user with the
provided callback hook. Throughout this process, all sensitive information about the private function remains hidden
from public view, ensuring strong privacy guarantees for all parties involved. Public state information, such as Note
Commitments Tree and Nullifier Set, is stored on the node side and public functions are handled on the node as well.

Procedure. A Transaction is constructed as Figure 68:

Figure 68: Transaction construction

As previously mentioned, proving the value of π is a crucial aspect of our transaction. Therefore, this section will
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primarily focus on the generation of proofs. Below are several critical proof statements, which, although brief, hold
great significance:

∃ old Notes (Noteold,1, Noteold,2, ..., Noteold,n)
old secret keys (askold,1, askold,2, ..., askold,n)
new Notes (Notenew,1, Notenew,2, ..., Notenew,m)
other auxiliary input aux
such that:
each old note Noteold,i:

- has a commitment that is in note commitments tree with tree root RL.
- is owned by secret key askold,i

- has a nullifier nfi
each new note Notenew,i has commitment cmj , and new commitment is unique.
When all the required parts match, including any other necessary components, the prover is able to produce a

valid proof π for the transaction.
Here is a more detailed explanation proof generation phase:
Input:

• public parameters pp
• old notes [ni]

n
1

address secret keys [aski]n1
• new 

address public keys [apkj ]m1

note payload [payloadi]
m
1

note birth predicates [Φb,j ]
m
1

note death predicates [Φd,j ]
m
1

• auxiliary predicate input aux
• transaction memorandum memo

Output: new notes [nj ]
m
1 and transaction tx that contains public function callback hooks [hookj ]

m
1 (if public

functions are called)
1. For each i ∈ {1, ..., n}, process the i-th old note as follows:

(a) Parse old note ni as (apki, payloadi, ρ, predicates(Φb,i,Φd,i), commitment cmi)

(b) Compute Note Commitments Tree(NCT) membership witness for commitment: WL,i ← NCT.Prove(cmi)

(c) Compute nullifier number: nfi ← PRF (ρ)

2. For each j ∈ {1, ...,m}, construct the j-th new note as follows:
(a) Compute nullifier nonce: ρj := Hash(ppCRH ||nf1||...||nfn)
(b) Construct new note: cmj ← ConstructNote(apkj , payloadj ,Φb,j ,Φd,j , ρj)

3. Retrieve current Note Commitments Tree root: RL ← NCT.Root.
4. Construct instance Xe for curcuit: Xe := (RL, [nfi]

n
1 , [cmj ]

m
1 ,memo, [hookj ]

m
1 )

5. Construct witness We for circuit: We := ([ni]
n
1 , [WL,i]

n
1 , [aski]

n
1 , [nj ]

m
1 , aux)
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6. Generate proof for: π ← Starky.Prove(pp,Xe,We)

7. Construct transaction: tx := ([nfj ]
n
1 , [cmj ]

m
1 ,memo,RL, π, [hookj ]

m
1 )

8. New notes and new constructed transaction: ([nj ]
m
1 , tx)

For additional information on the inner workings of Starky and how it produces proofs, please refer to this resource
6.1.

5.4 Delegable Proof Generation

The Section 5.3 scheme highlights a key challenge in generating cryptographic proofs for transactions in a
blockchain network. As the complexity of the transaction and the number of calls involved increases, so does the cost
of creating and including the proof in the transaction. This poses a significant problem for users, particularly those
using weaker devices such as mobile phones or hardware tokens.

To address this issue, a solution called Delegable Proof Generation Scheme (DPGS) has been proposed. DPGS
allows users to delegate the task of generating cryptographic proofs to a third party in a privacy-preserving manner,
such as a server or a more powerful device, while still maintaining the security and validity of the transaction. This
means that users can conduct complex transactions without incurring the high cost of generating proofs themselves.

The key system and note design used in DPGS ensures that transactions remain private and secure, even when
proof generation is delegated to a third party. The system creates notes, which represent a certain unit of state, and
each note is assigned a unique key. When a user wants to send a private transaction, they create a new note with a new
stealth key and send it to the receiver. To ensure that the transaction is valid, a cryptographic proof is required to show
that the note has not been previously spent or duplicated.

5.4.1 Current design

We compared the proof generation schemes of ZCash [46], ZEXE [10], VERI-ZEXE [44], Aleo [2], Aztec3 [7],
and Efficient Private Delegation of ZK-SNARK Provers [17] as shown in Table 28 below:

Schemes

ZCash User-side proof generation

ZEXE/VERI-ZEXE Delegable DPC

Aleo User-side proof generation for testnet3

Aztec
* Private function circuit proof generation at user-side,

* Public function circuit proof generation at sequencer of rollup side

EPDZP
MPC for PIOP and KZG based proof system,

core building block: Additive Secret Shares

Table 28: Current Proof Generation Schemes

As we can see from above figure, ZCash’s proof generation scheme is user-side proof generation, which means
ZCash has only one type of transaction, which is the transfer of ZEC. The transaction is not complex and the
corresponding circuit size is not very large. Therefore, when it comes to proof generation, such as for shielded
transactions, it can be done on the user side, for example, generating proofs within a wallet.
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The delegable DPC protocol in ZEXE [10] allows for the delegation of computations while maintaining security.
The protocol involves a delegator who sends input parameters to a delegatee, who then performs an offline computation
and generates a proof of correctness using zero-knowledge proofs. The delegatee sends this proof along with the output
of the computation back to the delegator, who can use it to generate a transaction that attests to the correctness of the
computation. This transaction can be publicly verified by anyone without revealing any additional information about
it.

To ensure privacy, ZEXE uses a combination of cryptographic techniques such as zero-knowledge proofs and
randomizable signatures. The randomizable signature scheme is used to prevent linking across multiple signatures,
which is important for maintaining security in the delegable DPC protocol that the delegatee can not impersonate the
delegator, e.g., by producing further transactions that the delegator never authorized.

VERI-ZEXE and ZEXE use the same delegable DPC scheme, we will not repeat it. Aleo’s current implementation
(testnet3 [2]) is still user-side and uses SNARK-powered circuits to generate proofs, but does not yet implement delegable
DPC.

Aztec3 [7] uses a recursive circuit to generate the final proof, and each contract function is a circuit when a proof
needs to be generated. The recursion uses two system circuits, private kernel circuits and public kernel circuits. All
private related function calls and their proofs must be entered into private kernel circuits to generate proofs, while all
public related function calls and their proofs must be entered into public kernel circuits to generate proofs. In short, the
proof of the private circuit is generated on the client side, while the proof of the public circuit is generated in Rollup’s
Squencer.

Efficient Private Delegation of zkSNARK Provers [17] uses MPC to do outsouring proveing. While it keeps
witness private and proving efficient, it is designed for Polynomial IOPs and MPC friendly polynomial commitments
proof system, while our ZK-ZKVM uses Starky as its internal proof system, which is not suitable for it.

5.4.2 Our work

Our design based on ZEXE, and the main procedure of delegable transactions as shown in the figure69 below:

Figure 69: Delegable transactions

Although ZEXE does not allow the delegatee to impersonate the delegator, the witness remains visible to all
participants on the public blockchain. This lack of privacy does not serve our purpose for ZK-ZKVM. To address this
issue, we incorporated an external cryptographic primitive called the Secret Share Scheme.

We generate a shared secret by combining the delegatee’s public key with the delegator’s private key. We then
use this shared key to symmetrically encrypt the witness on the delegator’s side, and send the encrypted witness to the
delegatee. The delegatee uses their private key and the delegator’s public key to retrieve the shared key and decrypt
the witness.
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Once the witness data is decrypted, the subsequent process is identical to that of ZEXE.
Let’s say User Alice is the delegator, Prover Bob is the delegatee. We briefly explain our delegable prove scheme:

• Alice generates shared key keyshared = skalice · pkbob
• Alice encrypt the witness, the encrypted witness is witnessenc = enc(keyshared, witness)

• Alice send the encrypted witness to Bob, while other participants on the public blockchain knows nothing.
• Bob generates shared key key′shared = skbob · pkalice, which is same as keyshared
• Bob decrypt the encrypted witness, get raw witness, witness = dec(key′shared, witnessenc)

• Bob use decrypted witness generating proof π, send proof back to Alice.
• Alice uses her signature private key to construct a transaction within proofs, send it to the blockchain.
Our high-level description of our scheme as shown in the figure70 below:

Figure 70: Our Proof Generation Scheme

5.5 Framework

Our high-level description of our framework as shown in the figure71 below:

Figure 71: ZK-ZKVM Framework

And the building blocks of our ZK-ZKVM are:
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Key System.
• The system will use a private key pair (sk, vk) to enable spending and viewing of funds.
• The spending key sk will be used to sign transactions such as transfer funds.
• The viewing key vk will allow the holder to view transactions without being able to spend the funds nor change

the state of owner.
• The system will ensure that transactions can only be signed using the correct spending key sk.

Note Model.
• The system will use a UTXO (Unspent Transaction Output) model to track the ownership of state/funds.
• Each private transaction will create one or more new Notes, which can be spent in future transactions.
• The system will ensure that transactions can only spend Notes that are owned by the signer of the transaction.
• The Note reveals nothing but a meaningless string to other users.

Private/Public execution.
• There are two kinds of functions for users in our system: private or public functions.
• Private functions have return values (also known as notes), while public functions do not.
• Private functions will be executed and proved by the signer of the transaction, using Key System and Notes as

core techniques described above.
• Private state can be decrypted by the owner’s key, while it can only be spent by the spending key and is read-only

when decrypted by the viewing key.
• Public functions have a callback hook, which is used in the Node’s execution and verification phase.
• Private functions can call Public functions, but not the other way around.

Smart Contract. As we said in earlier Section 5, this is a ZK-ZKVM, which means it supports arbitrary smart
contracts.

6 Algorithms

Ola uses ZKP to ensure the correct execution of the program and protect privacy. ZKP enables one party to prove
to another party that a statement is true without revealing any private information.

At present, there are many implementations of the ZKP algorithms, such as Groth16, Halo2, Marlin, Plonky2,
Starky, etc., and they have different technical characteristics. We thought about Ola’s requirements for the ZKP
algorithm. Firstly, as a ZKVM, we hope that the algorithm is more secure and more decentralized to use. Secondly,
any smart contract can be more succinct to be constrained. Thirdly, proof generation and verification have good
performance.

After careful consideration, we chose Starky as our proof generation algorithm and Plonky2 as our recursion
circuit algorithm. What they have in common is that they are both based on STARK, which means neither require
trusted third-party setup. Additionally, they both use the Goldilocks field to perform field operations. The difference
is that Starky is AIR-based, which makes it more suitable for ZKVM, while Plonky2 is Plonkish-based, which makes
it more suitable for specific computation, such as verification process of Starky.

Goldilocks field is a small prime field of order p = 264 − 232 + 1, and has the following properties:
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1. Each u32 operation requires only one VM cycle using the Goldilocks field.
2. Field elements are within 64-bit, making operations on Goldilocks field fast on modern CPUs.
3. There is no overflow problem in the modular multiplication operation of two 32-bit integers.
4. It’s very efficient to check whether four 16-bit values can construct a valid field element.

According to the test, a single multiplication operation on Goldilocks field takes only 2~3 cycles on modern CPUs.
In addition, the delay of multiplication is also lower and resource utilization is higher than other fields like BN254.

6.1 Starky

At present, a zero-knowledge proof system consists of modules such as arithmetic, constraint system and polyno-
mial commitment scheme. Ola’s proof system is based on Starky. Starky uses the same finite field and hash functions
as Plonky2 but without the computation-heavy arithmetizations. The arithmetic and constraint system in Starky is
implemented using AIR. That is, the calculation process of the program is represented by several STARK tables, and
there are predefined constraints between rows and columns for each table, and the same as between different tables. The
polynomial commitment scheme in Starky is DEEP-FRI, a non-interactive protocol that proves a committed polynomial
having a bounded degree.

6.1.1 STARK Tables Generation

The program in Ola will generate multiple original STARK tables after execution. There are several tables
currently, such as CPU, Memory, Bitwise, RangeCheck, CMP, etc.

Different tables define a different number of columns for storing data such as original data, fixed data, auxiliary
data. The values of some columns are determined when the program is executed, and the values of the remaining
columns need to be calculated using the program execution results. When the cells of all STARK tables have values,
we get the complete STARK tables, and then we can use FFT to interpolate each column in each STARK table into a
polynomial. The operation process for each table is as follows:

1. Iterate each row of the table, calculating the values of all instruction-related columns;
2. Calculate the value of the permutation argument related columns;
3. Calculate the value of the lookup related columns;
4. Interpolate all columns into polynomials using FFT;
5. Returns the column polynomial array and public input.

6.1.2 Starky Proof Generation

Once we have the polynomial array and public input for each STARK table as described in Figure 6.1.1, we
can start the proving process. Each STARK table in Starky must generate a ZK-STARK proof separately. The proof
process for each table is as follows:

1. Compute Polynomials and Commitments.
(a) Generate a Merkle commitment from polynomials of STARK table columns;
(b) Divide the instance of the permutation argument into multiple batches, each batch generates a polynomial

Z(X);
(c) Calculate Z(X) polynomials for cross table lookups;
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(d) Generate a Merkle commitment from all Z(X) polynomials above.
2. Using trace polynomials and Z(X) to generate quotient polynomials:

quotient(X) =

∑
C(X) + (P_Z(gX)

∏
rhs− P_Z(X)

∏
lhs) + (CTL_Z(gX)− CTL_Z(X)selector(gX))

Xn − 1
3. Divide the quotient polynomials into small polynomials, the degrees of which are quotient_degree_factor;
4. Generate a Merkle commitment from quotient polynomials;
5. Calculate the three points of the challenge ζ, g · ζ and the last point gn−1 in the group H;
6. Open the challenge points on the polynomial, respectively, and get openings;

(a) Point ζ is opened on
• Trace polynomials
• Permutation and cross table lookups polynomials
• Quotient polynomials

(b) Point g · ζ is opened on
• Trace polynomials
• Permutation and cross table lookups polynomials

(c) Point gn−1 is opened only on
• Cross table lookups polynomials

7. Generate the final polynomial;
(a) Compress the polynomial opened at each point into one polynomial

Fi(X) =
∑
j

αj · fij , i ∈ [3]

(b) Calculate the above Fi(X) quotient, where z ∈ {ζ, g · ζ, gn−1}

Qi(X) =
Fi(X)− Fi(z)

X − z
(c) Compress all the points to Qi(X) get the polynomial of the final FRI

Final(X) =

3∑
k=0

αkQi(X)

8. Generate a FRI proof for the final polynomial fri_proof;
9. Finally got the proof of a single stark, proof consists of

• trace_cap
• permutation_ctl_zs_cap
• quotient_polys_cap
• openings
• fri_proof

10. The STARK proofs and public input of all STARK tables are converted into a final proof of the program, called
a Starky proof.

There are now a total of 3 Merkle commitments
1. A Merkle commitment of trace polynomials;
2. A Merkle commitment of permutation_ctl_zs polynomials;
3. A Merkle commitment of quotient polynomials.
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The order of a quotient polynomial is determined by the related constraints and trace degree:

quotient_degree_factor · degree

The last point gn−1 is for cross table lookup checking. That is, the product of the last point value of multiple looking
tables is equal to the last point value of the looked table.

6.1.3 Starky Proof Verification

Proving that an Ola program executes correctly requires verifying the starky proof generated in Figure 6.1.2.
Verification mainly includes that each STARK proof is valid and that the cross table constraints between different
STARK tables are correct. The process is as follows:

1. Get all challenges for generating STARK proofs;
2. Get the number of Z polynomials in permutation arguments;
3. Generate the data required to verify the Z polynomials of the cross table lookups;

(a) The values of Z polynomials at ζ and g · ζ at each table generated;
(b) Generate the required β, γ used in generation of Z polynomials;
(c) Columns and selectors used for cross table lookups in each STARK table.

4. Verify each stark proof individually.
(a) Check the number of polynomials and cap_height of the stark proof are valid;
(b) Get the value of 3 points (ζ, g · ζ and gn−1) opened on column polynomials;
(c) Calculate the values of constraints, permutation arguments, and cross table lookup polynomials at the above

three points;
(d) Check quotient(ζ) · Z_H(ζ) = vanishing(ζ);
(e) Check FRI proof is valid.

6.1.4 FRI

Figure 72: FRI protocol
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FRI is a protocol that proves a committed polynomial having a bounded degree. Ola uses Deep-FRI for its
polynomial commitment scheme. Figure 72 simply expresses the calculation process of FRI, anyone can read DEEP-
FRI [8] for more details.

6.1.5 Benchmark

Many optimizations have not yet been applied, and we expect to see more performance improvements as we
devote more time to optimization. The benchmarks below should only be used as a rough guide to expected future
performance.

In the benchmarks below, the VM executes the same Fibonacci calculator program for 220 cycles at 100-bit target
security level on an advanced 64-core CPU.

VM cycles Execution time Proving time RAM consumption Proof size

218 81.115 ms 2.932 s 5.6 GB 175 KB

219 159.80 ms 6.143 s 11.1 GB 181 KB

220 318.08 ms 12.688 s 23.2 GB 187 KB

221 627.38 ms 29.923 s 45.3 GB 195 KB

222 1240.4 ms 61.834 s 86.6 GB 208 KB

223 2453.8 ms 128.62 s 176 GB 216 KB

6.2 Plonky2

Plonky2 [32] = Plonkish contraints system + DEEP-FRI commitment + Goldilocks field. We plan to use Plonky2
as our recursive Layer2 and Layer3 (supported in the future) because it’s more suitable for specific computation than
Starky which is more suitable for ZKVM. It should be noted that the designs described in this are the original version
of Plonky2, which will be more convenient to learn for the reader.

6.2.1 Circuit config

There are some types of configure in Plonky2, let us make some clarification on this first:
• num_wires is the maximum column number in one row;
• routed_num_wires is the maximum wires of gates in one row;
• num_constants is the maximum constants in one row;
• use_base_arithmetic_gate if the flag of base gate or extension gate;
• security_bit is the security level of prove system;
• num_challenges is the security parameter to get security_bit level;
• zero_knowledge is the flag of blind;
• max_quotient_degree_factor is the order parameter of constraint;
• rate_bits is the extension parameters for domain extension
• cap_height is the special parameter of Merkle tree;
• proof_of_work_bit is the difficulty parameter of query points;
• reduction_strategy is the parameters of FRI-reduction;
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standard-recursion-config

pub fn standard_recursion_config () -> Self {
Self {

num_wires : 135 ,
num_routed_wires : 80,
num_constants : 2,
use_base_arithmetic_gate : true ,
security_bits : 100 ,
num_challenges : 2,
zero_knowledge : false ,
max_quotient_degree_factor : 8,
fri_config : FriConfig {

rate_bits : 3,
cap_height : 4,
proof_of_work_bits : 16,
reduction_strategy : FriReductionStrategy :: ConstantArityBits (4, 5) ,
num_query_rounds : 28,

},
}

}

standard-recursion-zk-config

pub fn standard_recursion_zk_config () -> Self {
Self {

num_wires : 135 ,
num_routed_wires : 80,
num_constants : 2,
use_base_arithmetic_gate : true ,
security_bits : 100 ,
num_challenges : 2,
zero_knowledge : true ,
max_quotient_degree_factor : 8,
fri_config : FriConfig {

rate_bits : 3,
cap_height : 4,
proof_of_work_bits : 16,
reduction_strategy : FriReductionStrategy :: ConstantArityBits (4, 5) ,
num_query_rounds : 28,

},
}

}

standard-ecc-config

pub fn standard_ecc_config () -> Self {
Self {

num_wires : 136 ,
num_routed_wires : 80,
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num_constants : 2,
use_base_arithmetic_gate : true ,
security_bits : 100 ,
num_challenges : 2,
zero_knowledge : false ,
max_quotient_degree_factor : 8,
fri_config : FriConfig {

rate_bits : 3,
cap_height : 4,
proof_of_work_bits : 16,
reduction_strategy : FriReductionStrategy :: ConstantArityBits (4, 5) ,
num_query_rounds : 28,

},
}

}

wide-ecc-config

pub fn wide_ecc_config () -> Self {
Self {

num_wires : 234 ,
num_routed_wires : 80,
num_constants : 2,
use_base_arithmetic_gate : true ,
security_bits : 100 ,
num_challenges : 2,
zero_knowledge : false ,
max_quotient_degree_factor : 8,
fri_config : FriConfig {

rate_bits : 3,
cap_height : 4,
proof_of_work_bits : 16,
reduction_strategy : FriReductionStrategy :: ConstantArityBits (4, 5) ,
num_query_rounds : 28,

},
}

}

6.2.2 Gates

Each gate is a row with 135 columns. As different custom gate has different complexity, for some complex
gates 135 columns may only constrain one operation while for other simple gates, 135 columns may constrain several
operations. The index of operation in a row is called a slot index.

Steps to using a custom gate:
• Ensure the type of gate;
• Ensure the row and slot location of the gate;
• Ensure the wires layout of the gate;
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• Ensure the consistency between public data and wires of gate;
• Ensure the row location of public data;
• Finalize the trace table;
• Constraint for trace table;
• Generate proof.
For the convenience of description, the trace tables in this paper only show one operation which is slot 0.

6.2.2.1 arithmetic_base
ArithmeticGate is a gate that can perform a multiply-add with constants, i.e.

res = cons_0×mul_0×mul_1 + cons_1× add.

The structure of the gate is shown in Figure 73.

Figure 73: ArithmeticGate

There’s only one constraint per operation, and the degree is 3.

6.2.2.2 arithmetic_extension
To understand the design principle of this Gate, we must first understand field extensions.
Taking Plonky2’s Goldilocks field as an example, we give the extension field elements under quadratic, quartic,

and quintic extensions respectively in Figure 74.
It is easy to see that for quadratic extension field, the elements on its domain take the form a+ b

√
7, a, b ∈ Fp. It

can be seen that on the quadratic extension field, there are p2 elements and the original field is a subset of the quadratic
extension field.
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Figure 74: Goldilocks Field Extension

ArithmeticExtensionGate is also a gate that can perform a weighted multiply-add, i.e.

res = cons_0×mul_0×mul_1 + cons_1× add

The elements of the QuadraticExtension Field are represented in the form [a, b], so the Gate design for arith-
metic_extension has the following form:

The structure of the gate is shown in Figure 75. There’s only one constraint per operation, and the degree is 3.

Figure 75: ArithmeticExtensionGate
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6.2.2.3 base_sum
BaseSumGate is used to constrain the input to be composed of limbs that are arranged in little-endian. There are

two kinds of constraints:
For each limb, limb is in range [0, base):

base∑
i=0

(limbi − i) = 0.

Input is composed of limbs:

input =
n−1∑
i=0

limbn−1−i × basei.

The structure of the gate is shown in Figure 76.

Figure 76: BaseSumGate

There’s 1 constraint for the sum check and 8 constraints for the limbs’ range check. The degree of the gate is
2limb_size.

6.2.2.4 exponentiation
ExponentiationGate is a gate for raising a value to a power. The trace table contains the base, bits of the exponent,

output, and intermediate value of the bits.
Take A21 = A10101b for example to describe intermediate value, the bits are [1, 0, 1, 0, 1].

1. Current bit = 1, we start from 1, and times Abit we get A
2. Current bit = 0,

• Square prev_intermediate_value A1b<<1 = A10b

• Then times Abit we get A10b ×A0 = A10b

3. Current bit = 1,
• Square prev_intermediate_value A10b<<1 = A100b

• Then times Abit we get A100b ×A = A101b

4. Current bit = 0,
• Square prev_intermediate_value A101b<<1 = A1010b

• Then times Abit we get A1010b × 1 = A1010b
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5. Current bit = 1,
• Square prev_intermediate_value A1010b<<1 = A10100b

• Then times Abit we get A10100b ×A = A10101b

And we get the last intermediate value A10101b which should be equal to the output.
Let’s take another example of a specific number 213 = 21101b , and have a look at the trace cell:

base b_0 b_1 b_2 b_3 output inter_0 inter_1 inter_2 inter_3

2 1 0 1 1 8192 2 8 64 8192

The structure of the gate is shown in Figure 77.

Figure 77: ExponentiationGate

Each step result is constrainted with intermediate values, and output is constrained with the final intermediated
value, a total of bits+ 1 constraints. The degree of the gate is 4, which is determined by the intermediate calculation:

let computed_intermediate_value =
prev_intermediate_value * ( cur_bit * base + not_cur_bit );

6.2.2.5 Poseidon
Poseidon is a hash function designed for the Zero-Knowledge proof system. Its calculation process is rough as

follows:
Each round function of Poseidon permutation consists of the following three components.

1. ARC(.): AddRoundConstants
2. S: SubWords
3. M(.): MixLayer

The Trace of the gate is like this:
• input: components of the input, 12 elements.
• output: components of the output, 12 elements.
• swap: 0 or 1, Indicates whether the first four elements of the input are swapped with the last four elements.
• delta: used when swap is 1, deltai = swap× (inputrhs − inputlhs).
• green region: full rounds, ri_1 ri_11 is the state of each round.

114

https://www.poseidon-hash.info/


Figure 78: Construction of poseidon

Figure 79: PoseidonGate

• yellow region: partial rounds, each element is state[0] of each round.
Calculation process and related constraints:

• Assert that swap is binary. (1 constraint)

constraints .push(swap * (swap - F:: Extension :: ONE))

• Assert deltai = swap× (rhs− lhs). (4 constraints)

for i in 0..4 {
....
constraints .push(swap * ( input_rhs - input_lhs ) - delta_i );

}

• Initialize state: when swap=0, state=input; when swap=1, state is swapped input:

i0+d0 i1+d1 i2+d2 i3+d3 i4-d0 i5-d1 i6-d2 i7-d3 i8 i9 i10 i11

Table 29: Poseidon State Init
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for i in 0..4 {
...
state [i] = vars. local_wires [ input_lhs ] + delta_i ;
state [i + 4] = vars. local_wires [ input_rhs ] - delta_i ;

}
for i in 8.. SPONGE_WIDTH {

state [i] = vars. local_wires [Self :: wire_input (i)];
}

• Begin first full rounds calculation, for each round r (which is 0–3):
– Perform ARC: Add each element of state to the pre-generated value at a particular position in the array.

for i in 0.. WIDTH {
state [i] += F:: from_canonical_u64 ( ALL_ROUND_CONSTANTS [i + WIDTH * round_ctr ]);

}

– Except for r=0, constrain each element of the state calculated in the previous round (the green part of the
first slice of the figure). (12 constraints per round, a total of 36 constraints)

– Perform SubWords: Turn state element by element x into x 7→ x7

– Perform MixLayer: Each element of the state is updated according to itself and a pre-generated array.

// r is the index of state elements here.
let mut res = F:: ZERO;

for i in 0.. WIDTH {
res += v[(i + r) % WIDTH ] * F:: from_canonical_u64 (Self :: MDS_MATRIX_CIRC [i]);

}
res += v[r] * F:: from_canonical_u64 (Self :: MDS_MATRIX_DIAG [r]);

• Perform partial rounds:
– Perform ARC

for i in 0..12 {
if i < WIDTH {

state [i] += F:: from_canonical_u64 (Self :: FAST_PARTIAL_FIRST_ROUND_CONSTANT [
i]);

}
}

– Processing of state with 11× 11 MDS (maximum distance separable) matrix.

result [0] = state [0];
for r in 1..12 {

if r < WIDTH {
for c in 1..12 {

if c < WIDTH {
let t = F:: from_canonical_u64 (

Self :: FAST_PARTIAL_ROUND_INITIAL_MATRIX [r - 1][c - 1],
);
result [c] += state [r] * t;

}
}
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}
}
result

– Perform 22 round sbox, for the first 21 rounds (r = 0–21):
∗ Take sbox_in(yellow elements in the figure), and constrains state[0]=sbox_in – 21 rounds totally 21

constraints.
∗ state[0] = state[0]^7

∗ state[0] += FAST_PARTIAL_ROUND_CONSTANTS[r]

∗ Perform mds to state.
– For the 22nd round:

∗ state[0] = sbox_in (i constraint)
∗ state[0] = state[0]^7

∗ Perform mds to state.
• Perform second round "Full rounds", same with the first round. (the green part of the second slice of the figure).

(12 constraints, 4 rounds totally of 48 constraints)
• Asserts computed result equals output. (12 constraints)

for i in 0.. SPONGE_WIDTH {
constraints .push( state [i] - vars. local_wires [Self :: wire_output (i)]);

}

The constraints of this gate in total is 123, the degree is 7 (when performing s-box, making state[i] 7→ state[i]7).

6.2.2.6 poseidon_mds
This gate is used for constraining outputs of Poseidon mds.

Figure 80: PoseidonMdsGate

computed_output is calculated from input, and constrained with output element by element, a total of 12 constraints
(degree 1).

let inputs : [_; SPONGE_WIDTH ] = (0.. SPONGE_WIDTH )
.map (|i| vars. get_local_ext_algebra (Self :: wires_input (i)))
. collect ::<Vec <_ > >()
. try_into ()
. unwrap ();

let computed_outputs = Self :: mds_layer_algebra (& inputs );
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(0.. SPONGE_WIDTH )
.map (|i| vars. get_local_ext_algebra (Self :: wires_output (i)))
.zip( computed_outputs )
. flat_map (|( out , computed_out )| (out - computed_out ). to_basefield_array ())
. collect ()

6.2.2.7 random_access
RandomAccessGate is used to verify that an element matches a value in the list.

Figure 81: RandomAccessGate

• item: list items.
• copy: index of the target element in the list
• claimed: target element
• bit_i: bits for the i-th copy
For each copy:

• Constrain bits are 0 or 1. – bits constraints for each copy, A total of num_copied*bits constraints.

for &b in &bits {
constraints .push( builder . mul_sub_extension (b, b, b));

}

• Constraint copy consists of bits. – 1 constraint for each copy, A total of num_copied constraints.

let reconstructed_index = bits
.iter ()
.rev ()
.fold(zero , |acc , &b| builder . mul_add_extension (acc , two , b));

constraints .push( builder . sub_extension ( reconstructed_index , access_index ));

• For each bit, reconstruct items with a 2-elements-tuple, select the first element when the bit is 0, and select the
second when the bit is 1. After the bits round, only one element remains, that is, the index element corresponding
to bits, constraint it with claimed.

for b in bits {
list_items = list_items

.iter ()

. tuples ()

.map (|(&x, &y)| builder . select_ext_generalized (b, y, x))
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Figure 82: Random Access Example

. collect ()
}
// Check that the one remaining element after the folding is the claimed element .
debug_assert_eq! ( list_items .len () , 1);
constraints .push( builder . sub_extension ( list_items [0] , claimed_element ));

Finally, the constant is constrained – A total of num_extra_constraints constraints.
In summary, there’re num_copies× (bits + 2) + num_extra_constants constraints. The degree is bits + 1 which

happens when repeatedly folding the list.

6.2.2.8 reducing
ReducingGate is used for computes output = old_acc +

∑
Ci · αi in the base field.

The trace structure for this gate is like this:

Figure 83: ReducingGate

The constraint flow is relatively intuitive, initializing acc to old_acc, then cumulative computation of polynomials
by coeff in turn, and constraining the intermediate results of each step with acc.

for i in 0.. self. num_coeffs {
let coeff = builder . convert_to_ext_algebra ( coeffs [i]);
let mut tmp = builder . mul_add_ext_algebra (acc , alpha , coeff );
tmp = builder . sub_ext_algebra (tmp , accs[i]);
constraints .push(tmp);
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acc = accs[i];
}

The number of constraints is equal to the number of coefficients. The polynomial degree is 2 which happens when
calculating coeffi ∗ α, sum up does not increase degree.

ReducingExtensionGate is like ReducingGate, just computations happen in the extension field, and constrain logic
is all the same.

6.2.2.9 high_degree_interpolation
InterpolationGate is used for the interpolation of a polynomial, whose points are a (base field) coset of the

multiplicative subgroup with the given size, and whose values are extension field elements. As for HighDegreeInter-
polationGate, allows constraints of variable degree, up to 1 << subgroup_bits. The higher degree is a tradeoff for
fewer gates (than LowDegreeInterpolationGate).

HighDegreeInterpolationGate trace is shown in Figure 84.

Figure 84: HighDegreeInterpolationGate

Constraints as follows:
• Bring each point (from the point-value pairs) into the coefficient polynomial to compute the computed_value

and compare the constraint with the value (from the point-value pairs). – A total of 2subgroup_bits constraints.

for (i, point ) in coset . into_iter (). enumerate () {
let value = vars. get_local_ext_algebra (self. wires_value (i));
let computed_value = interpolant . eval_base ( point );
constraints . extend (( value - computed_value ). to_basefield_array ());

}

coset: [sg, sg2, ..., sg2
subgroup_bits

], s = shift.
• Evaluate the coefficient-form polynomial at the evaluation point and constrain it. – 1 constraint.
The degree of this gate equals the number of points (num_points): max point power is num_points − 1, and

multiplication by coefficient adds 1 degree.
The number of constraints equals num_points + 1: num_points for consistency between the coefficients and the

point-value pairs, 1 constraint for the evaluation value.
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6.2.2.10 low_degree_interpolation
InterpolationGate is used for the interpolation of a polynomial, whose points are a (base field) coset of the

multiplicative subgroup with the given size, and whose values are extension field elements. As for LowDegreeInterpo-
lationGate, all constraints are degree <= 2, low degree is a tradeoff for more gates (than HighDegreeInterpolationGate).

LowDegreeInterpolationGate trace is shown in Figure 85.

Figure 85: LowDegreeInterpolationGate

Constraints as follows:
• Constrain powers of shift, from shift2 to shiftn−1, a total of 2subgroup_bits − 2 constraints.

for i in 1.. self. num_points () - 1 {
constraints .push( powers_shift [i - 1] * shift - powers_shift [i]);

}

• Bring each point (from the point-value pairs) into the coefficient polynomial to compute the computed_value
and compare the constraint with the value (from the point-value pairs). – A total of 2subgroup_bits constraints.

• Constrain powers of evaluation point. – A total of 2subgroup_bits − 2 constraints.
• Evaluate the coefficient-form polynomial at the evaluation point and constrain it. – 1 constraint.
As can be seen from the above constraint description, the number of constraints is 3 · 2subgroup_bits − 3, degree of

LowDegreeInterpolationGate is 2.

6.2.2.11 add_many_u32
U32AddManyGate is a gate to perform addition on num_addends different 32-bit values, plus a small carry. There

can be up to 16 operations per gate.
The gate structure is like Figure 86.
Constraints for each operation:

• Constrain the result of addends summation equals results of res and carry_out calculation. – 1 constraint with
degree 1

let base = F:: Extension :: from_canonical_u64 (1 << 32 u64);
let combined_output = output_carry * base + output_result ;
constraints .push( combined_output - computed_output );
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Figure 86: U32AddManyGate

• Limbs range check. – 18(limbs) constraints with degree 4.(limbs are all 2-bits)

let product = (0.. max_limb )
.map (|x| this_limb - F:: Extension :: from_canonical_usize (x))
. product ();

constraints .push( product );

• Constrain limbs for res and carry_out. – 2 constraints with degree 1.
In summary, there are 21 constraints for each operation. The degree of the gate is 4 which is needed by the 4-bits

limbs range check.

6.2.2.12 arithmetic_u32
U32ArithmeticGate gate is used for compute res = mul_0×mul_1+ add. res is stored in res_lo and res_hi each

of which can be represented by 15 limbs.
The gate structure is like Figure 87.
Constraints for each operation:

• Constrain res is not overflow (less than or equal to max_u32 * max_u32 + max_u32). – 1 constraint with
degree 2.

• Constrain combined (by res_lo and res_hi) output equals computed (by mul_0 * mul_1 + add) output. – 1
constraint with degree 2.

• Limbs range check. – 32 (limbs) constraints with degree 4. (limbs are all 2-bits)
• Constrain limbs for res_lo and res_hi. – 2 constraints with degree 1.
In summary, there are 36 constraints for each operation. The degree of the gate is 4 which is needed by the 4-bits
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Figure 87: U32ArithmeticGate

limbs range check.

6.2.2.13 comparison
ComparisonGate is a gate for checking that one value is less than or equal to another. Compared numbers are

divided into chunks, and chunk size and the number are configurable.
For a ComparisonGate with 8 4-bits chunks is like Figure 88.
The main idea of constraints:

• Consistency of the sliced chunks and the original values.
• Range check for each chunk.
• If the chunks are equal, the difference is 0 and there is no inverse.
• Chunk by chunk so for most significant diff equals related intermediate_value.
• If first <= second, the top n+1-th bit of (2n + most_significant_diff) will be 1.

6.2.2.14 range_check_u32
U32RangeCheckGate is a gate that can decompose a number into base B little-endian limbs.
The gate structure is like Figure 89.
Constraints for each input_limb:

• Each input_limb consists of its aux_limbs. – 1 constraint with degree 1.

let computed_sum = reduce_with_powers (& aux_limbs , base);
constraints .push( computed_sum - input_limb );

• aux_limbs range check. – 16 (aux_limbs) constraints with degree BASE ((x− 0)(x− 1) · · · (x− BASE + 1)).
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Figure 88: ComparisonGate

Figure 89: U32RangeCheckGate

In summary, there are 17 constraints per input limb, a total of num_input_limbs× 17 constraints. The degree of
the gate equals BASE for range check.

6.2.2.15 subtraction_u32
U32SubtractionGate is a gate to perform subtraction on 32-bit limbs: given ‘x’, ‘y’, and ‘borrow’, it returns the

result x− y − borrow and, if this underflows, a new ‘borrow’.
The gate structure is like Figure 90.
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Figure 90: U32SubtractionGate

Constraints for each operation:
• Constrain the calculation. – 1 constraint with degree 2.

let result_initial = input_x - input_y - input_borrow ;
...
constraints .push( output_result - ( result_initial + base * output_borrow ));

• Limbs range check. – 16 (limbs) constraints with degree 4. (limbs are all 2-bits)
• Constrain limbs for res. – 1 constraint with degree 1.
• Constrain borrow_out to be one bit. – 1 constraint with degree 1.
In summary, there are 19 constraints for each operation. The degree of the gate is 4 which is needed by the 4-bits

limbs range check.

6.2.3 Gadgets

6.2.3.1 biguint-add
1. Target: Implement the addition of two biguints.
2. Constraints logic:

• Equation for gates;
• Sumcheck between output and limbs;
• Rangecheck for limbs.

3. Circuit layout: See Figure 91.
4. Trace layout: See Figure 92.
5. Constraints info and costs
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• gate type num: 1 (U32AddManyGate)
• gate ops num: limbs-num
• gate instance num: ceil(limbs-num / gate.ops)
• copy-constraints: limbs-num * 4
• max-degree: 4 (1 << limb-bits)

Figure 91: biguint-add circuit layout

Figure 92: biguint-add trace layout

6.2.3.2 biguint-sub
1. Target: Implement the substraction of two biguints.
2. Constraints logic:

• Equation for gate;
• Sumcheck for ouptput;
• Rangecheck for limbs.

3. Circuit layout: See Figure 93.
4. Trace layout: See Figure 94.
5. Constraints info and costs:

• constraints-num: 6× (3 + 32/2) = 114

• copy-constraints: 16
• max-degree: 4

126



• wires-num: 6× (5 + 16) = 126

Figure 93: biguint-sub circuit layout

Figure 94: biguint-sub trace layout

6.2.3.3 biguint-mul
1. Target: Implement the multiplication of two biguints.
2. Constraints logic:

• Compute mul-factors first, use U32ArithmeticGate;
• Add mul-factors from low bits, use U32AddManyGate.

3. Process layout: See Figure 95
4. Constraints info and costs:

• Gate type num: 4 (U32ArithmeticGate, U32AddManyGate(num-addends: 4), U32AddManyGate(num-
addends: 6), U32AddManyGate(num-addends: 8))

• Gate instance num: 9
• U32ArithmeticGate num: 6
• U32AddManyGate num: 3
• copy-constraints: 18× 3 + (4 + 6 + 8)× 2 + 9 = 99

• max-degree: 4

6.2.3.4 biguint-div
Note that div-rem has the same constraints logic with div
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Figure 95: biguint-mul layout

1. Target: Implement the division of two biguints.
2. Constraints logic:

• Not implement div-algrithem directly;
• Use nondeterministic feature to check div-logic;
• Check div * b + rem = a;
• Check rem < b.

3. Process layout: See Figure 96.
4. Constraints info and costs:

• Gate type num: 5 (U32ArithmeticGate, U32AddManyGate (num-addends: 3), U32AddManyGate (num-
addends: 4), ComparisionGate, ArithmeticGate)

• Gate instance num: 3 + 3 + 4 + 3 = 13

• U32ArithmeticGate num: 3
• U32AddManyGate num: 3
• ComparisionGate num: 4
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• ArithmeticGate num: 3
• copy-constraints: 3× 8 + 4 + 5 + 4 + 4× 6 + 7 + 1 + 26 + 5 = 100

• max-degree: 4

Figure 96: biguint-div layout

6.2.3.5 biguint-cmp
1. Target: Implement the comparison of two biguints.
2. Constraints logic

• Split the input to many limbs, such that: limbs_num = bits / chunks;
• Execute comparison for low bits limbs;
• Ensure that the result is determined by the highest limbs which are not equal.

3. Process layout: See Figure 97.
4. Circuit layout: See Figure 98.
5. Constraints info and costs:

• Gate type num: 2 (ComparisionGate, ArithmeticGate)
• Gate instance num: 4× 2 + 3 = 11

• ComparisionGate num: 8
• ArithmeticGate num: 3
• copy-constraints: (4 + 9)× 4 + 1 = 53

• max-degree: 4

6.2.3.6 non-native-add
1. Target: Check the additional relation among three non-native target objects.
2. Constraints logic:

• Check equation for gadget: a + b = c + modular * overflow;
• Check that “c < modular”.
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Figure 97: biguint-cmp layout

Figure 98: biguint-cmp circuit layout

3. Process layout: See Figure 99.
4. Constraints info and costs:

• gadget biguint-add num: 2
• gadget biguint-mul-by-bool num: 1
• gadget biguint-cmp num: 1
• gate type num: 3 (U32AddManyGate, ComparisonGate, ArithmeticGate)
• gate instance num: 23 = 3 (U32AddManyGate) + 16 (ComparisonGate) + 2 (ArithmeticGate (1,0)) + 1

(ArithmeticGate(1,-1)) + 1 (ArithmeticGate(1,1))
• copy-constraints: 186 = 32 * 2biguint-add + 9biguint-mul-by-bool + 9 + (4 + 9) * 8biguint-cmp = 186
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Figure 99: non-native-add layout

6.2.3.7 non-native-sub
1. Target: Check the substrate relation among three non-native target objects.
2. Constraints logic:

• Check equation for gadget: diff + b = a + modular * overflow;
• Check that “overflow is bool”;
• Check that “diff.limbs is range U32”.

3. Process layout: See Figure 100
4. Constraints info and costs:

• gadget biguint-add num: 1
• gadget biguint-sub num: 1
• gadget biguint-mul-by-bool num: 1
• gadget u32rangecheck num: 1
• gadget assert-bool num: 1
• gate type num: 4 (U32AddManyGate, U32SubtractionGate, U32RangeCheckGate, ArithmeticGate)
• gate instance num: 7 = 2 (U32AddManyGate) + 2 (U32SubtractionGate) + 1 (U32RangeCheckGate) + 1

(ArithmeticGate(1,0)) + 1 (ArithmeticGate(1,-1))
• copy-constraints: 89 = 32 (biguint-add num) + 27 (U32SubtractionGate) + 9(biguint-mul-by-bool) + 8

(u32rangecheck) + 4 (assert-bool) + 9

6.2.3.8 non-native-mul
1. Target: Check the multiplication relation among three non-native target objects.
2. Constraints logic:

• Check equation for gadget: a * b = prod + modular * overflow;
• Check that “overflow.limb is U32”;
• Check that “prod.limb is U32”.

3. Process layout: See Figure 101.
4. Constraints info and costs:
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Figure 100: non-native-sub layout

• gadget biguint-add num: 1
• gadget biguint-mul num: 2
• gadget u32rangecheck num: 2
• gate type num: 9 = 7 (U32AddManyGate{3,5,7,9,11,13,15}) + 1 (U32RangeCheckGate) + 1 (U32ArithmeticGate)
• gate instance num: 37 = 2 (u32rangecheck) + 8 (biguint-mul: constant-input) + 22 (biguint-mul) + 1 + 3

(biguint-add)
• copy-constraints: 583 = 8 * 2 (u32rangecheck) + 3 * 3 + (4 + 6 + 8 + 10 + 12 + 14 + 16) * 4 + (8 * 8) * 3

+ 17 * 4 + 18

Figure 101: non-native-mul layout

6.2.3.9 non-native-inv
1. Target: Check the modular inverse relation among three non-native target objects.
2. Constraints logic:

• Check equation for gadget: a * inv_a = 1 + modular * div.
3. Process layout: See Figure 102.
4. Constraints info and costs:
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• gadget biguint-add num: 1
• gadget biguint-mul num: 2
• gate type num: 8 = 7 (U32AddManyGate{3,5,7,9,11,13,15}) + 1 (U32ArithmeticGate)
• gate instance num: 56 = (8 * 8 + 2) * 2 / 3 + 5 (U32AddManyGate3) + 5 + 2 (U32AddManyGate15)
• copy-constraints: 762 = (8 * 8 + 2) * 2 * 3 + 21 * 4 + (6 + 8 + 10 + 12 + 14) * 4 + 4 * 16 + 18

Figure 102: non-native-inv layout

6.2.3.10 curve-add
1. Target: Implement the addition of two different curve points. this is an incomplete addition, you can refer to

The halo2 Book [40] to learn more about it.
2. Constraints logic: (x1, y1) ̸= (x2, y2), See Figure 103.
3. Process layout: See Figure 104
4. Constraints info and costs:

• gadget-sub-nonnative num: 5
• gadget-add-nonnative num: 1
• gadget-mul-nonnative num: 3
• gadget-inv-nonnative num: 1
• gate type num: 14

– 8: U32AddManyGate{2,3,5,7,9,11,13,15}
– 1: ComparisonGate
– 1: ArithmeticGate
– 1: U32ArithmeticGate
– 1: U32SubtractionGate
– 2: U32RangeCheckGate{0,8}

6.2.3.11 curve-double
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Figure 103: curve-add

Figure 104: curve-add layout

1. Target: Implement the addition of two same curve points. this is an incomplete addition, you can refer to The
halo2 Book [40] to learn more about it.

2. Constraints logic: See Figure 105.
3. Constraints info and costs:

• gadget-sub-nonnative num: 3
• gadget-add-nonnative num: 5
• gadget-mul-nonnative num: 4
• gadget-inv-nonnative num: 1
• gate type num: 14

– 8: U32AddManyGate{2,3,5,7,9,11,13,15}
– 1: ComparisonGate
– 1: ArithmeticGate
– 1: U32ArithmeticGate
– 1: U32SubtractionGate
– 2: U32RangeCheckGate{0,8}
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Figure 105: curve-double layout

6.2.3.12 curve-assert-valid
1. Target: Check the point is on the curve y2 = x3 + ax+ b.
2. Process layout: See Figure 106.
3. Constraints info and costs:

• gadget-add-nonnative num: 3
• gadget-mul-nonnative num: 3
• gate type num: 13

– 8: U32AddManyGate{2,3,5,7,9,11,13,15}
– 1: ComparisonGate
– 1: ArithmeticGate
– 1: U32ArithmeticGate
– 2: U32RangeCheckGate{0,8}

6.2.3.13 curve-msm
1. Target: Implement the multiplication scalar multiplication (MSM).
2. Constraints logic: See Figure 107.
3. Constraints info and costs:

• gate type num: 14
• gate instance num: 147553

6.2.3.14 curve-scalar
1. Target: Implement the multiplication between scalar and point.
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Figure 106: curve-assert valid layout

Figure 107: curve-msm

2. Constraints logic: See Figure 108.
3. Constraints info and costs:

• gate type num: 13
• gate instance num: 180364

Figure 108: curve-scalar

6.2.3.15 ecdsa
1. Target: Implement ecdsa verify process.
2. Constraints logic: See Figure 109.
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3. Constraints info and costs:
• gate type num: 16
• gate instance num: 98039

Figure 109: ecdsa

6.3 Inner Table Lookup

Inner-table lookup can be thought of as a subset argument technology between columns I and T, proving that cells
in column I all appear in column T at least once, and it does not matter whether the cells in column T are in I. To
simplify the calculation, the columns in the STARK table are all 2k rows, and when the cells of columns I and T are
not 2k, they need to be extended.

• Cells in column I can be extended with elements in column I or column T
• Cells in column T can only be extended with cells in column T, usually the last one
The inner-table lookup technology is to first generate the corresponding permutation columns I’ and T’ from

columns I and T, respectively. The permutation relationship between I and I’, T and T’ can be checked through the
permutation argument during the proving phase:

Z(ωX) · (I ′(X) + β) · (T ′(X) + γ)− Z(X) · (I(X) + β) · (T (X) + γ) = 0

1− Z(ω0) = 1− Z(ωk) = 0

Then sort columns I’ and T’ as follows:
1. Column I’ is ordered by a sorting algorithm so that cells of the same value are adjacent to each other.
2. Column T’ is ordered so that the first row in a sequence of the same values in I’ has the same value in T’ at the

same position.
Now, we’ll enforce either I ′i = T ′

i or that I ′i = I ′i−1, using the rule:

(I ′(X)− T ′(X)) · (I ′(ωX)− I ′(X)) = 0

I ′(ω0)− T ′(ω0) = 0

These constraints effectively force every element in I’ (and thus I) to equal at least one element in T’ (and thus T).

6.4 Cross Table Lookup

The goal of cross table lookup is different from that of inner-table lookup, which is not only a subset argument,
but a mix of subset argument and permutation argument.

Cross table lookup indicates the multi-table lookup in the plookup [20], that is, the data in a looked table comes
from multiple looking tables. When implementing STARK tables, Starky should define all the STARK cross table
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lookup relationships, that is, which other STARK tables each STARK table needs to look from, and which columns
and rows are involved (filtered) in the looked table and looking table respectively during the lookup. Each STARK
table needs to perform cross table lookups, so there are multiple CrossTableLookups in Starky, and each cross table
lookup instance consists of a looked table and multiple looking tables.

We generate a Z(X) polynomial from calculating the permutation product as the grand product argument
polynomial for the permutation argument in a cross table lookup instance, and then enforce that they are permutations
using a permutation argument with Z(X) polynomial

1. Initialize cross table lookup instances and random numbers β, γ
2. Calculate the partial products of the looking table and looked table, compressing the values of multiple columns

into one:
C =

∏
(ciβ

i) + γ

3. Calculate Z(X) polynomial from partial products

Z(ωX) = Z(X) · (C · filter + 1− filter)

4. Verify that the product of the last element of the Z(X) polynomials of all looking tables is equal to the last
element of the Z(X) of the looked table∏

i

Z looking
i (ωki−1) = Z looked(ωklooked−1)

Cross table lookup enforces STARK tables are correctly generated from the program, and reduces the rows in
CPU STARK table.

6.5 GPU Acceleration

The polynomial computations of ZK mainly consists of multiple NTTs and iNTTs. The large-size NTTs result in
sigificant challenges for both off-chip memory accesses and on-chip compute resources, due to the irregular strided
access patterns similar to classical FFTs. The GPU acceleration section takes full advantage of GPU multi-threaded
parallel processing to speed up NTT calculations.

6.5.1 NTT Computations

The NTT computation is defined as
â = NTT (a)

Where a and â are two N size arrays, and â[i] =
∑N−1

j=0 a[j]ωij
N . Here a[i] and â[i] are λ-bit scalars in a finite field.

And ωN is the N -th root of unity in the same field, also is called twiddle factor, which is a constant value for a specific
size of N .

Similar to classical FFTs, optimized and improved performance implementations of the NTT are of necessity
and fundamental essentials. Cooley-Tukey processing is a commonly used NTT algorithm in science and engineering.
For example, the Cooley-Tukey algorithm reduces the computational complexity from O(N2) to O(N logN). Its
fundamental idea is to recursively decompose a large-size NTT into several linear combinations of smaller NTTs. The
butterfly network of Cooley-Tukey NTT is a decimation-in-time network whereby its twiddle factor appears on the
input side of calculation and input data are arranged in bit-reversed order. Figure 110 illustrates the butterfly networks
of Cooley-Tukey NTT. The NTT optimization mainly involves butterfly network and butterfly computing.
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Figure 110: The butterfly networks of Cooley-Tukey NTT

6.5.2 2-D NTT

NTT is an important kernel commonly used in our ZK scheme. In fact, there exist many accelerator designs for
NTT. However, the polynomial computations in our ZK scheme have substantially larger scales than those addressed
in other ZK. It requires multiple NTTs of up to 223 or 224 elements, Such large sizes can hardly be satisfied by any
previous GPU design.

To overcome the large-sizes challenges, we adopt a 2-D NTT algorithm to decompose a large NTT into multiple
smaller NTT kernels (4096/8192). This allows GPU to only implement smaller NTT modules, which can fit into the
compute resources (e.g. the stream processor number of on GPU). Then the original large-size NTT can be calculated
by iteratively using the smaller NTT.

The overview of 2-D NTT algorithm is shown in Figure 111. First of all, a large NTT size N is decomposed into
P rows and Q columns, with N = P ×Q. Then the N-size NTT can be calculated by several P-size and Q-size smaller
NTTs. Firstly, the P-size NTT is parallel computing using the same twiddle factors for each of the Q columns. The
output is still a P-size vector. Before the second dimensional NTT, a corresponding twiddle factor ωij is multiplied
to each element of the output vector. Finally, a Q-size NTT for each of the P rows is parallel computing. The output
column-major order elements is the result of the large-size NTT.

6.5.3 GPU and CUDA

Currently, the GPU is no longer limited to graphics processing. Thanks to the rapid evolution of their architecture
that made it straightforward to access their underlying powerful parallelism to address different categories of data
parallel algorithms to be handled efficiently by this platform. The GPU is designed to process a huge amount of
numbers operations in parallel relying on thousands of computing cores running concurrently. CUDA is a general-
purpose parallel computing architecture that delivers a novel parallel programming paradigm and a new instruction set
architecture that can easily leverage the parallel power of the computing engine embedded in the CUDA-enabled GPUs
to solve complex scientific and engineering applications. It becomes straightforward to decompose the computations
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Figure 111: The 2-D NTT algorithm

into fine-grained threads and execute theses threads on the device in parallel. CUDA refers to the software platform and
the hardware architecture used to execute the kernels. A kernel launches thousands of threads for parallel execution
organized in three levels: grids, blocks, and warps. The grids are two- or three-dimensional arrangements of threads
blocks where every block consists of an upper limit of threads 512 or 1024 depending on the compute capability
version of the device, and finally each group of threads form a wrap. Such architecture is called Single Instruction
Multiple Thread (SIMT); which allows the GPU to execute single instruction on multiple concurrent threads operating
on different data. Every running thread has access to some built-in variable assigned by the CUDA run time system
and used for thread indexing. CUDA also has an efficient memory hierarchy divided in global, shared, register, texture,
and constant memory.

6.5.4 Implement of 2-D NTT with GPU

To overcome the large-sizes challenges on GPU, the 2-D NTT algorithm is adopted. For a particular GPU model,
the number of stream processors has been set to a fixed value, so the total number of threads running simultaneously
on this GPU is limited. In order to make full use of the GPU thread resources, we set NTT’s two-dimensional running
framework as shown in Figure 112 with a 223 size NTT. The NTT sequence is divided into 8192 rows and 1024
columns. For each column, 8192 threads (This number can be adjusted based on the number of stream processors
to achieve maximum GPU utilization) are allocated to calculate 8192-size 1D NTT in parallel. After processing
each column, the NTT of the second dimension can process 8 rows at a time through the Cooperative Groups (CG)
mechanism. The Cooperative Groups programming model describes synchronization patterns both within and across
CUDA thread blocks. It provides CUDA device code APIs for defining, partitioning, and synchronizing groups of
threads. It also provides host-side APIs to launch grids whose threads are all guaranteed to be executing concurrently
to enable synchronization across thread blocks. These primitives enable new patterns of cooperative parallelism within
CUDA, including producer-consumer parallelism and global synchronization across the entire thread grid or even
multiple GPUs.

Therefore, the total running time of the GPU is 1024 8192-size NTTs plus 1024 1024-size NTTs.
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Figure 112: Implement of 2-D NTT with GPU

6.5.5 Memory Access

The following Figure 113 shows the CUDA memory model. The large-size NTT data is copied from the host
into global memory. Then it is sent to shared memory into the compute queue. For faster access, precomputed twiddle
factors are stored in texture memory. When the twiddle factor is used, it is copied sequentially to the registers according
to the index. The results of one-dimensional NTTs are saved in shared memory. When the NTT is calculated, the
output is copied from shared memory to global memory and uploaded to the host.

Figure 113: CUDA Memory Model

6.6 FPGA Acceleration

The NTT acceleration design consists of two main parts: the NTT engine and the DMA data transfer engine.
The NTT engine performs calculations on given-length data points, while the DMA data transfer engine efficiently
exchanges data between the NTT engine and DDR.
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Figure 114: The design of NTT acceleration implemented in FPGA

6.6.1 NTT engine

In this design, the NTT engine consists of multiple parallel-running NTT modules. The maximum supported data
length for a single NTT module is 212. Moreover, a modular multiplication unit is connected to the output of each NTT
module to support the extension of two-dimensional or higher-dimensional NTTs. To improve scalability performance,
variable-length NTT calculations can be achieved through parameter configuration through the AXI4 interface.

In practical applications, processing in parallel with multiple NTT modules can greatly improve computational
performance. For a single NTT module, one point reading and one storage operation are required per clock cycle.
When 8 NTTs are processed in parallel in the engine, the total access bandwidth required is 8 * 8 byte/point * (1x read
+ 1x write) * 100MHz = 11.92 GB/sec with assuming a working clock of 100MHz. That is, the calculation rate of
NTT is 8 * 100MHz / 224 / 2= 25 times/sec. For the AWS FPGA platform, the user logic can use three DDR4 channels
with a interface frequency up to 2100MHz. The total supported simultaneous access bandwidth is 3 * 8 byte/DDR *
2100MHz = 46.9 GB/sec. Therefore, the maximum supported NTT calculation rate is 25 * 46.9 / 11.92 = 98 times/sec.

NTT calculation module To support NTT calculation with the length of 224, it is better to consider the 224 points
as a 2D array with a size of 212 points by 212 points. Using the Gentleman-Sande algorithm, the first pass through
the engine computes 212 NTTs column-wise of the 2D array using the carefully designed NTT module with a length
of 212. For this module, a recursive NTT Algorithm is adopted, which contains 12 stages of butterfly with varying
kernel sizes. Users can adjust the sizes of both columns and rows in the 2D array by setting parameters to meet FPGA
running requirements. Finally, the output of the NTT block performs modular multiplication according to the 2D NTT
algorithm.

NTT kernel The NTT block contains several kernels, each of which is mainly composed of a butterfly unit and two
RAMs. The butterfly unit is carefully designed to take maximum advantage of the FPGA DSPs, especially by utilizing
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Figure 115: Various-size NTT block (MM: modular multiplication)

the tricks of the Goldilocks field multiply to improve computational efficiency over modular reduction. One of the
RAMs is used to buffer the input data, while the other stores the twiddle factors required for butterfly calculation.

Figure 116: NTT kernel (TF: twiddle factor; BF: Butterfly)

Generation of twiddle factors To realize the 2D NTT, the outputs of the 1st pass with the NTT engine should be
multiplied by the corresponding twiddle factors, as shown in Fig.2. Since the twiddle factors required for the NTT
output of different columns of the 2D array are different, these twiddle factors must be updated for every column. To
reduce the necessary DDR bandwidth, a combination of LUT and computation is used to generate these twiddle factors.
The LUT provides 212 twiddles needed for modular multiplication before the 2nd pass.Then, the updating twiddle
factor is computed by multiplying the LUT twiddles with an accumulated running twiddle factor and then writing
back to the LUTs at the same of modular multiplying. Additionally, the twiddle factors needed in the NTT block are
provided by LUTs and loaded once before performing the NTT. Therefore, the total number of multiplication/reduction
units per block is 13: 11 for the 12 butterfly stages and 2 for each twiddle updating and modulation multiplication out
of the NTT block.

Bit Reversal The NTT engine performs bit reversal during NTT computation, which is achieved by bit reversing each
pass of the NTT at the end of the block (as shown in the above NTT blocks). A final step is required to complete the bit
reversal across the two passes. This can be achieved by writing back the results of the 2nd pass using the column-major
access pattern instead of the row-major access pattern.
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6.6.2 DMA Engine

The sole responsibility of the DMA Engine is to exchange points between the NTT Engine and the memory
outside of the FPGA at the NTT Engine’s burst processing rate. With the NTT Engine capable of consuming and
producing 8 points per cycle when 8 NTT blocks are working concurrently, and an NTT Engine clock rate nearing
300MHz, the feed and sink rates are both 17.9 GB/sec. The FPGA’s DDR4 memory, with a peak bandwidth of 46.9
GB/sec, can support the combined feed and sink bandwidth need of 35.8 GB/sec while also providing enough storage
for 224 points. In addition, to fully utilize the bandwidth of DDR4 and continuously provide high data bandwidth to
the NTT engine, a large data buffer RAM is introduced in the DMA engine to maintain a high data throughput rate for
the AXI4 interface.

6.6.3 Simulation

To verify the feasibility of the designed NTT acceleration scheme, it was implemented in Vivado using Verilog
HDL language and both functional and timing simulations were performed. The simulation results are shown in the
following figure.

Figure 117: NTT simulation

In the Figure: the signals of WeightEn and WeightIn are the configurations for the twiddle factors of the NTT
module; WeightEnStep2 and WeightInStep2 are twiddle factors for the output of large number modular multiplication
in the NTT module; signals of WeightIntervalEn and WeightIntervalIn are used to be accumulated twiddle factors
when updating the twiddle to multiply the outputs of NTT blocks; DataIn and DataEn are the input data for the first
dimension of the NTT, while DataOut_1st and DataValid_1st are the computed results outputted; DataIn_2nd and
DataEn_2nd are the input data for the second dimension of the NTT, and DataOut_2nd and DataValid_2nd are the
computed results outputted; DataCalCmp is used for indicate the comparison of the computed NTT results with the
theoretical ones.

In the implementation, 8-way parallel NTT acceleration is used. According to the timing, the NTT engine is
respectively configured with LUT twiddle factors, LUT twiddle factors of modular multiplication, and accumulated
twiddle factors. To compute a 4096-point NTT, the size of the 2D array is 8 * 16 * 32 for the first passs and 8 * 4 * 128
for the second one. Based on the comparison signal DataCalCmp, the results obtained from the 2D NTT operation are
consistent with the theoretical values. When performing the second 4096-point NTT acceleration, it is only necessary
to reload the modular multiplication LUT twiddle factors.
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7 Appendix

7.1 Parallel Execution

7.1.1 Challenges in Parallel Transaction Execution

The transaction execution process for most blockchains is as follows: the execution module sequentially retrieves
transactions from the block and executes them one by one. During execution, the latest world state is modified. When
a transaction is completed, the state is accumulated until the latest world state is reached after the completion of the
block. The execution of the next block strictly depends on the world state after the execution of the previous block.
Therefore, it is difficult to optimize parallel execution in the traditional linear transaction execution process.

In traditional blockchain projects, transactions cannot be directly executed in parallel, mainly due to the following
types of race conditions:

1. Account conflicts: If two threads update the balance or other attributes of the same account simultaneously,
the result must be consistent with sequential processing, meaning the world state is a deterministic finite state
machine.

2. Storage conflicts: Two contract variables modify the storage of the same global variable simultaneously.
3. Cross-contract call conflicts: Contract A must be deployed first, and Contract B calls Contract A after Contract

A is deployed. However, after parallel transaction execution, the order no longer exists, result in a conflict.

7.1.2 OlaVM Parallel Transaction Execution Solution

The implementation of OlaVM is as follows: each transaction within the same block starts from the world state
of the previous block and is executed in parallel. During execution, all three types of race conditions encountered in
the ideal execution path are recorded. After the parallel execution phase is finished, the merge phase begins. In the
merge phase the world states are sequentially combined. When merging each transaction, First, determine if there is a
conflict. If there are no conflicts, merge directly; if conflicts exist, re-execute the transaction from the starting point of
the merged world state to obtain a new world state.

If the current node needs to process blocks synchronized from other nodes, the processing flow is as follows:
1. The node starts the parallel transaction execution process.
2. After the parallel transaction execution is completed, the node merges the world state.
3. The node verifies the final merged world state using the synchronized block hash.
4. If the verification is correct, the node broadcasts the block to the network.
5. If the verification is incorrect, the node re-executes the block sequentially.

In general, if the computing task can be fully parallelized, the scalability of a single chain will be enormous. This is
because nodes can add more CPU cores. However, the actual situation is not like this. The maximum theoretical speed
is limited by Amdahl’s Law [3]: the speedup limit of the system depends on the reciprocal of the non-parallelizable
part. For example, if 99% parallelism can be achieved, the speed can be increased 100 times; if only 95% parallelism
can be achieved, the speed can be increased 20 times.

For the replay of all Ethereum transactions, about 80% of transactions can be parallelized, while the remaining
20% cannot be parallelized. Therefore, the theoretical speed-up limit of Ethereum transaction processing using this
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solution is about 5 times.
For block producers, since they can be deployed on higher-performance machines, If they can accurately identify

the conflicting conditions of different transactions and sort these transactions according to the best strategy, the
parallelism may be greatly improved, thus achieving higher speedup.

The transaction process is executed in parallel as shown in the figure 118.
The comparison between parallel execution and sequential execution is shown in the figure 119.

Figure 118: Parallel Transaction Execution Process

7.1.3 Conflict Transaction Marking

In EVM, conflicts mainly occur during the process when certain instructions perform read and write operations
on storage. By recording these read-and-write operations, a read-and-write set can be formed. However, static code
analysis cannot ensure that all these processes are recorded. Therefore, when processing transactions in each block,
each transaction needs to be pre-executed in parallel. Through the pre-execution process, it can be identified whether
these transactions perform read and write operations on the same account or storage, and then a read-set and write-set
can be generated for each transaction. The pre-execution process first copies the world state multiple times as the initial
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Figure 119: Sequential Execution vs Parallel Execution

state for all transactions. Suppose there are 100 transactions in the blockchain; these 100 transactions can be executed
in parallel through a thread pool. Each contract has the same initial world state, and during execution, 100 read-sets
and write-sets will be generated, along with 100 new states.

After the pre-execution is finished, the next phase begins. Ideally, if these 100 read-sets and write-sets have no
conflicts, they can be directly merged to produce the final world state after all transactions in the block have been
executed. However, conflicts in merger transactions usually do not proceed smoothly. The correct way is to first
compare the read-sets and write-sets after the execution of the first and second transactions to see if they perform read
and write operations on the same account or storage. If there is a conflict, it means that these two transactions have
conflicts. At this point, the state after the completion of the first transaction will be used as the starting state for the
second transaction, and the second transaction will be re-executed. In this way, as the state machines are continuously
merged, the conflict set will continue to accumulate. As long as subsequent transactions have conflicts with previous
transactions, they will be executed sequentially until all transactions are completed.

7.1.4 Advantages and Disadvantages of the Solution

Advantages: Improved parallel speed, and enhanced security without using locks. Since the state merging itself
is not the focus of time consumption, it basically won’t form a bottleneck.

Disadvantages: Putting all transaction validations at the end of the processing phase may lead to performance
degradation when there are many transaction conflicts. However, for Ethereum transactions, there are relatively few
conflicting items, so the performance is expected to increase by about 3 to 5 times.
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7.2 Solidity Compatibility

Solidity is an advanced programming language specifically designed for smart contract development. It is widely
used on the Ethereum network and supported by other blockchain projects that are compatible with the Ethereum
Virtual Machine (EVM). The following advantages of Solidity make it necessary for some blockchain projects to
support it:

• Solidity has a large developer community and user base, with many excellent smart contract projects and cases
that can provide reference and inspiration for other blockchain projects. Supporting Solidity can attract these
existing developers and users, and increase their activity and liquidity.

• Solidity has a rich development toolset and ecosystem including compilers, debuggers, testing frameworks, code
analysis tools, code libraries, etc, which can improve development efficiency and code quality. Supporting
Solidity enables developers to enjoy these mature tools and resources thereby enhancing their security and
stability.

Therefore, some blockchain projects need to support Solidity to attract more developers and users; enhance their
competitiveness and influence; contribute towards the development and innovation of smart contracts.

7.2.1 How OlaVM Supports Solidity?

The Ola compiler generates an abstract syntax tree (AST) by parsing the syntax of Solidity. In Solidity, contracts
are composed of various functions. Therefore, the Ola compiler first parses the function definitions of Solidity
contracts and converts each function into a corresponding AST node. For each function, the Ola compiler parses the
function’s parameters, returns values, visibility, and other attributes, and represents them as properties of AST nodes.
When parsing the function body, the Ola compiler decomposes the function body into basic statement blocks, such as
assignment statements, conditional statements, and loop statements, and converts them into corresponding AST nodes.
During this process, the Ola compiler performs semantic analysis to check the correctness of statements and the type
matching. For example, when parsing an assignment statement, the Ola compiler checks whether the types on both
sides match. If not, a compilation error is generated.

In addition to function definitions, Solidity also supports advanced syntax structures such as structures, enumer-
ations, and events. When parsing these structures, the Ola compiler converts them into corresponding AST nodes and
generates the corresponding Ola opcodes. In general, the Solidity parsing process in the Ola compiler can be divided
into the following steps:

• Lexical analysis: Decompose Solidity code into basic lexical units (such as keywords, variable names, and
numbers).

• Syntax analysis: Combine lexical units into an abstract syntax tree according to Solidity’s syntax rules.
• Semantic analysis: Check the correctness and type matching of the syntax tree, and generate the corresponding

Ola opcodes.
After parsing, the AST tree is obtained. The process of generating LLVM IR from the AST tree includes the

following steps:
• The Ola compiler converts the Solidity AST nodes into corresponding LLVM IR syntax tree nodes and maps the

variables, types, functions, and other information in Solidity to the types, global variables, functions, and other
elements in LLVM IR.
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• After generating the LLVM IR syntax tree, the Ola compiler optimizes it and then compiles it into Ola opcodes,
which is the instruction set that OlaVM can execute directly. Specifically, the Ola compiler converts the LLVM
IR syntax tree into Static Single Assignment (SSA)[39] form, where each variable is assigned only once, making
it easier for subsequent analysis and optimization.

Then, the Ola compiler converts the LLVM IR syntax tree in SSA form into Ola opcodes, which mainly includes
the following steps:

• Convert the basic blocks in the LLVM IR syntax tree into basic blocks in Ola opcodes.
• Convert the instructions in the LLVM IR syntax tree into Ola opcodes. Ola opcodes are simpler than LLVM IR

instructions and only include basic operations, branching, and jumping instructions.
• Convert the PHI instructions [30] in the SSA form of the LLVM IR syntax tree into PHI instructions in Ola

opcodes.
After completing the above process, the Ola compiler generates Ola opcodes that can be executed on OlaVM. By
introducing the intermediate representation form LLVM IR, the Ola compiler can compile Solidity into LLVM IR, and
then compile LLVM IR into Ola opcodes, making OlaVM support not only Ola language but also many programming
languages that can be compiled to LLVM IR, with better flexibility and extensibility.

The above process is shown in the figure120.

Figure 120: Solidity Compilation Process

7.2.2 Further Discussion

Although compiling Solidity into LLVM IR is feasible, there are many details in between that are worth considering.
This is also a key direction that needs improvement.

• Data type mapping: Solidity has many proprietary data types, such as uint, int, address, bytes, bool, etc. When
converting Solidity code to LLVM IR, these data types need to be mapped to data types supported by LLVM IR.

• Function calls and message passing: Solidity contracts communicate with each other through message passing
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and support both external and internal function calls. When compiling Solidity to LLVM IR, these calls and
message-passing mechanisms need to be handled correctly.

• Storage and memory: Solidity has two types of data storage: persistent storage and memory. The compiler needs
to be able to correctly handle these storage types and map them to the corresponding data structures in LLVM
IR.

• Exception handling: Solidity uses statements like revert, require, and assert to handle exceptions. When
compiling Solidity to LLVM IR, these exception-handling mechanisms need to be mapped to the exception-
handling structures in LLVM IR.

• Access control and visibility: Solidity supports access control and visibility modifiers, such as private, internal,
public, and external. These modifiers need to be correctly converted to access control and visibility structures in
LLVM IR.

Fortunately, some of the issues can be solved by defining certain built-in functions and built-in structures, but
some problems cannot be directly resolved, such as:

• EVM-specific features: Solidity has some features specific to the Ethereum Virtual Machine (EVM), such as
self-destruct, gas-left, and block-hash. These features may not apply to other platforms based on LLVM IR and
may require alternative solutions or limitations on their use.

• Full ABI support: Solidity’s Application Binary Interface (ABI) is used for encoding and decoding data between
contracts. Compiling Solidity to LLVM IR may require an additional implementation to support the full ABI.

• Optimization and Performance: Compiling Solidity to LLVM IR may result in performance loss, as we introduce
non-deterministic computation in the Ola language. This solves most of the difficult-to-compute but easy-to-
verify problem, which cannot be gained by directly processing Solidity.

8 Glossary

• ZKP: Zero-Knowledge Proof.
• MPC: Multi-Party Computation.
• IOP: Interactive Oracle Proof.
• ZK-SNARK: Zero-Knowledge Succinct Non-Interactive Argument of Knowledge.
• ZK-STARK: Zero-Knowledge Scalable Transparent Argument of Knowledge.
• ZKVM: Zero-Knowledge Virtual Machine.
• AIR: Arithmetic Intermediate Representations.
• FRI: Fast Reed-Solomon Interactive Oracle Proof.
• DEEP-FRI: Domain Extending for Eliminating Pretenders of FRI.
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